An interpreter for Rust's mid-level intermediate representation
https://github.com/rust-lang/miri.git
Miri is an Undefined Behavior detection tool for Rust. It can run binaries and test suites of cargo projects and detect unsafe code that fails to uphold its safety requirements. For instance:
unreachable_unchecked] beingcopy_nonoverlapping] with overlapping ranges, ...)
bool that is not 0 or 1, for example,On top of that, Miri will also tell you about memory leaks: when there is memory
still allocated at the end of the execution, and that memory is not reachable
from a global static, Miri will raise an error.
You can use Miri to emulate programs on other targets, e.g. to ensure that byte-level data manipulation works correctly both on little-endian and big-endian systems. See cross-interpretation below.
Miri has already discovered many real-world bugs. If you found a bug with Miri, we'd appreciate if you tell us and we'll add it to the list!
By default, Miri ensures a fully deterministic execution and isolates the
program from the host system. Some APIs that would usually access the host, such
as gathering entropy for random number generators, environment variables, and
clocks, are replaced by deterministic "fake" implementations. Set
MIRIFLAGS="-Zmiri-disable-isolation" to access the real system APIs instead.
(In particular, the "fake" system RNG APIs make Miri **not suited for
cryptographic use**! Do not generate keys using Miri.)
All that said, be aware that Miri does not catch every violation of the Rust specification in your program, not least because there is no such specification. Miri uses its own approximation of what is and is not Undefined Behavior in Rust. To the best of our knowledge, all Undefined Behavior that has the potential to affect a program's correctness is being detected by Miri (modulo bugs), but you should consult the Reference for the official definition of Undefined Behavior. Miri will be updated with the Rust compiler to protect against UB as it is understood by the current compiler, but it makes no promises about future versions of rustc.
Further caveats that Miri users should be aware of:
-Zrandomize-layout
to detect some of these cases.)
-Zmiri-seed, but that will still by far not explore all possible executions.
--target x86_64-unknown-linux-gnu to get
better support.
Moreover, Miri fundamentally cannot ensure that your code is sound. [Soundness] is the property of never causing undefined behavior when invoked from arbitrary safe code, even in combination with other sound code. In contrast, Miri can just tell you if *a particular way of interacting with your code (e.g., a test suite) causes any undefined behavior in a particular execution* (of which there may be many, e.g. when concurrency or other forms of non-determinism are involved). When Miri finds UB, your code is definitely unsound, but when Miri does not find UB, then you may just have to test more inputs or more possible non-deterministic choices.
Install Miri on Rust nightly via rustup:
rustup +nightly component add miri
All the following commands assume the nightly toolchain is pinned via rustup override set nightly.
Alternatively, use cargo +nightly for each of the following commands.
Now you can run your project in Miri:
cargo miri test.cargo miri run.cargo miri run/test supports the exact same flags as cargo run/test. For
example, cargo miri test filter only runs the tests containing filter in
their name.
You can pass flags to Miri via MIRIFLAGS. For example,
MIRIFLAGS="-Zmiri-disable-stacked-borrows" cargo miri run runs the program
without checking the aliasing of references.
When compiling code via cargo miri, the cfg(miri) config flag is set for code
that will be interpreted under Miri. You can use this to ignore test cases that fail
under Miri because they do things Miri does not support:
#[test]
#[cfg_attr(miri, ignore)]
fn does_not_work_on_miri() {
tokio::run(futures::future::ok::<_, ()>(()));
}
There is no way to list all the infinite things Miri cannot do, but the interpreter will explicitly tell you when it finds something unsupported:
error: unsupported operation: can't call foreign function: bind
...
= help: this is likely not a bug in the program; it indicates that the program \
performed an operation that Miri does not support
Miri can not only run a binary or test suite for your host target, it can also
perform cross-interpretation for arbitrary foreign targets: cargo miri run
--target x86_64-unknown-linux-gnu will run your program as if it was a Linux
program, no matter your host OS. This is particularly useful if you are using
Windows, as the Linux target is much better supported than Windows targets.
You can also use this to test platforms with different properties than your host
platform. For example cargo miri test --target s390x-unknown-linux-gnu
will run your test suite on a big-endian target, which is useful for testing
endian-sensitive code.
Certain parts of the execution are picked randomly by Miri, such as the exact base address
allocations are stored at and the interleaving of concurrently executing threads. Sometimes, it can
be useful to explore multiple different execution, e.g. to make sure that your code does not depend
on incidental "super-alignment" of new allocations and to test different thread interleavings.
This can be done with the -Zmiri-many-seeds flag:
MIRIFLAGS="-Zmiri-many-seeds" cargo miri test # tries the seeds in 0..64
MIRIFLAGS="-Zmiri-many-seeds=0..16" cargo miri test
The default of 64 different seeds can be quite slow, so you often want to specify a smaller range.
When running Miri on CI, use the following snippet to install a nightly toolchain with the Miri component:
rustup toolchain install nightly --component miri
rustup override set nightly
cargo miri test
Here is an example job for GitHub Actions:
miri:
name: "Miri"
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Install Miri
run: |
rustup toolchain install nightly --component miri
rustup override set nightly
cargo miri setup
- name: Test with Miri
run: cargo miri test
The explicit cargo miri setup helps to keep the output of the actual test step
clean.
Miri does not support all targets supported by Rust. The good news, however, is
that no matter your host OS/platform, it is easy to run code for any target
using --target!
The following targets are tested on CI and thus should always work (to the degree documented below):
s390x-unknown-linux-gnu is supported as our "big-endian target of choice".linux, macos, or windows, Miri should generally work, but wesolaris / illumos: maintained by @devnexen. Supports the entire test suite.freebsd: maintained by @YohDeadfall and @LorrensP-2158466. Supports the entire test suite.android: maintainer wanted. Supports the entire test suite.main function.Though it implements Rust threading, Miri itself is a single-threaded interpreter
(it works like a multi-threaded OS on a single-core CPU).
This means that when running cargo miri test, you will probably see a dramatic
increase in the amount of time it takes to run your whole test suite due to the
inherent interpreter slowdown and a loss of parallelism.
You can get your test suite's parallelism back by running cargo miri nextest run -jN
(note that you will need cargo-nextest installed).
This works because cargo-nextest collects a list of all tests then launches a
separate cargo miri run for each test. For more information about nextest, see the
cargo-nextest Miri documentation.
Note: This one-test-per-process model means that cargo miri test is able to detect data
races where two tests race on a shared resource, but cargo miri nextest run will not detect
such races.
Note: cargo-nextest does not support doctests, see https://github.com/nextest-rs/nextest/issues/16
miri driverThe recommended way to invoke Miri is via cargo miri. Directly invoking the underlying miri
driver is not supported, which is why that binary is not even installed into the PATH. However, if
you need to run Miri on many small tests and want to invoke it directly like you would invoke
rustc, that is still possible with a bit of extra effort:
# one-time setup
cargo +nightly miri setup
SYSROOT=$(cargo +nightly miri setup --print-sysroot)
# per file
~/.rustup/toolchains/nightly-x86_64-unknown-linux-gnu/bin/miri --sysroot "$SYSROOT" file.rs
When using the above instructions, you may encounter a number of confusing compiler errors.
RUST_BACKTRACE=1 environment variable to display a backtrace"You may see this when trying to get Miri to display a backtrace. By default, Miri
doesn't expose any environment to the program, so running
RUST_BACKTRACE=1 cargo miri test will not do what you expect.
To get a backtrace, you need to disable isolation
using -Zmiri-disable-isolation:
RUST_BACKTRACE=1 MIRIFLAGS="-Zmiri-disable-isolation" cargo miri test
std compiled by an incompatible version of rustc"You may be running cargo miri with a different compiler version than the one
used to build the custom libstd that Miri uses, and Miri failed to detect that.
Try running cargo miri clean.
-Z flags and environment variablesMiri adds its own set of -Z flags, which are usually set via the MIRIFLAGS
environment variable. We first document the most relevant and most commonly used flags:
-Zmiri-backtrace=<0|1|full> configures how Miri prints backtraces: 1 is the default,full prints backtraces without pruning, and 0
disables backtraces entirely.
-Zmiri-deterministic-concurrency makes Miri's concurrency-related behavior fully deterministic.-Zmiri-fixed-schedule -Zmiri-compare-exchange-weak-failure-rate=0.0
-Zmiri-address-reuse-cross-thread-rate=0.0 -Zmiri-disable-weak-memory-emulation.
-Zmiri-disable-isolation disables host isolation. As a consequence,-Zmiri-isolation-error.
-Zmiri-disable-leak-backtraces disables backtraces reports for memory leaks. By default, a-Zmiri-ignore-leaks.
-Zmiri-env-forward=<var> forwards the var environment variable to the interpreted program. Can-Zmiri-disable-isolation is set.
-Zmiri-env-set=<var>=<value> sets the var environment variable to value in the interpreted program.-Zmiri-disable-isolation or -Zmiri-env-forward
is set, values set with this option will have priority over values from the host environment.
-Zmiri-ignore-leaks disables the memory leak checker, and also allows some-Zmiri-isolation-error=<action> configures Miri's response to operationsabort, hide, warn,
and warn-nobacktrace are the supported actions. The default is to abort,
which halts the machine. Some (but not all) operations also support continuing
execution with a "permission denied" error being returned to the program.
warn prints a full backtrace each time that happens; warn-nobacktrace is less
verbose and shown at most once per operation. hide hides the warning entirely.
This overwrites a previous -Zmiri-disable-isolation.
-Zmiri-many-seeds=[<from>]..<to> runs the program multiple times with different seeds for Miri's<from> part is skipped, it defaults to 0.
Can be used without a value; in that case the range defaults to 0..64.
-Zmiri-many-seeds-keep-going tells Miri to really try all the seeds in the given range, even if-Zmiri-max-extra-rounding-error tells Miri to always apply the maximum error to float operations-Zmiri-no-extra-rounding-error stops Miri from adding extra rounding errors to float operations-Zmiri-no-short-fd-operations stops Miri from artificially forcing read/write operationsread/write (e.g. for file-backed file descriptors), the host system can still
introduce short reads/writes.
-Zmiri-num-cpus states the number of available CPUs to be reported by miri. By default, the1. Note that this flag does not affect how miri handles threads in
any way.
-Zmiri-permissive-provenance disables the warning for integer-to-pointer casts andptr::with_exposed_provenance.
This will necessarily miss some bugs as those operations are not efficiently and accurately
implementable in a sanitizer, but it will only miss bugs that concern memory/pointers which is
subject to these operations.
-Zmiri-report-progress makes Miri print the current stacktrace every now and then, so you can-Zmiri-report-progress=<blocks>, which prints the report every N basic
blocks.
-Zmiri-seed=<num> configures the seed of the RNG that Miri uses to resolve non-determinism. Thiscompare_exchange_weak, and to control store buffering for weak memory emulation. When isolation
is enabled (the default), this is also used to emulate system entropy. The default seed is 0. You
can increase test coverage by running Miri multiple times with different seeds.
-Zmiri-strict-provenance enables strict-Zmiri-symbolic-alignment-check makes the alignment check more strict. By default, alignment isalign_to method works fine in both modes; under
symbolic alignment it only fills the middle slice when the allocation guarantees sufficient
alignment.)
-Zmiri-user-relevant-crates=<crate>,<crate>,... extends the list of crates that Miri considers#[track_caller] frame
in a user-relevant crate). When using cargo miri, the crates in the local workspace are always
considered user-relevant.
The remaining flags are for advanced use only, and more likely to change or be removed. Some of these are unsound, which means they can lead to Miri failing to detect cases of undefined behavior in a program.
-Zmiri-address-reuse-rate=<rate> changes the probability that a freed non-stack* allocation
will be added to the pool for address reuse, and the probability that a new non-stack allocation
will be taken from the pool. Stack allocations never get added to or taken from the pool. The
default is 0.5.
-Zmiri-address-reuse-cross-thread-rate=<rate> changes the probability that an allocation which0.1, which means by default, in 90% of the cases where an address reuse
attempt is made, only addresses from the same thread will be considered. Reusing an address from
another thread induces synchronization between those threads, which can mask data races and weak
memory bugs.
-Zmiri-compare-exchange-weak-failure-rate=<rate> changes the failure rate ofcompare_exchange_weak operations. The default is 0.8 (so 4 out of 5 weak ops will fail).
You can change it to any value between 0.0 and 1.0, where 1.0 means it
will always fail and 0.0 means it will never fail. Note that setting it to
1.0 will likely cause hangs, since it means programs using
compare_exchange_weak cannot make progress.
-Zmiri-deterministic-floats makes Miri's floating-point behavior fully deterministic. This meansmin/max and "maybe fused" multiply-add all behave
deterministically. Note that Miri still uses host floats for some operations, so behavior can
still differ depending on the host target and setup. See -Zmiri-no-extra-rounding-error for
a flag that specifically only disables the random error.
-Zmiri-disable-alignment-check disables checking pointer alignment, so you-Zmiri-disable-data-race-detector disables checking for data races. Using-Zmiri-disable-weak-memory-emulation.
-Zmiri-disable-stacked-borrows disables checking the experimental-Zmiri-tree-borrows.
-Zmiri-disable-validation disables enforcing validity invariants, which are-Zmiri-disable-weak-memory-emulation disables the emulation of some C++11 weak-Zmiri-fixed-schedule disables preemption (like -Zmiri-preemption-rate=0.0) and furthermore-Zmiri-deterministic-concurrency to disable them all.
-Zmiri-force-intrinsic-fallback forces the use of the "fallback" body for all intrinsics that-Zmiri-native-lib=<path to a shared object file or folder> is an experimental flag for providing.so file is specified, this can cause Undefined Behavior in
Miri itself! And of course, Miri often cannot do any checks on the actions taken by the native code.
Note that Miri has its own handling of file descriptors, so if you want to replace some
functions working on file descriptors, you will have to replace all of them, or the two kinds of
file descriptors will be mixed up.
This is work in progress; currently, only integer and pointers arguments and return values are
supported and memory allocated by the native code cannot be accessed from Rust (only the other way
around). Native code must not spawn threads that keep running in the background after the call has
returned to Rust and that access Rust-allocated memory.
Finally, the flag is unsound in the sense that Miri stops tracking details such as
initialization and provenance on memory shared with native code, so it is easily possible to write
code that has UB which is missed by Miri.
-Zmiri-native-lib-enable-tracing enables the WIP detailed tracing mode for invoking native code.-Zmiri-measureme=<name> enables measureme profiling for the interpreted program.<name>, and can be processed
using the tools in the repository https://github.com/rust-lang/measureme.
-Zmiri-mute-stdout-stderr silently ignores all writes to stdout and stderr,-Zmiri-recursive-validation is a highly experimental* flag that makes validity checking
recurse below references.
-Zmiri-preemption-rate configures the probability that at the end of a basic block, the active0.01 (i.e., 1%). Setting this to 0 disables
preemption. Note that even without preemption, the schedule is still non-deterministic:
if a thread blocks or yields, the next thread is chosen randomly.
-Zmiri-provenance-gc=<blocks> configures how often the pointer provenance garbage collector runs.10000 basic blocks. Setting
this to 0 disables the garbage collector, which causes some programs to have explosive memory
usage and/or super-linear runtime.
-Zmiri-track-alloc-accesses show not only allocation and free events for tracked allocations,-Zmiri-track-alloc-id=<id1>,<id2>,... shows a backtrace when the given allocations aremiri_track_alloc.
-Zmiri-track-pointer-tag=<tag1>,<tag2>,... shows a backtrace when a given pointer tag-Zmiri-track-weak-memory-loads shows a backtrace when weak memory emulation returns an outdated-Zmiri-disable-weak-memory-emulation.
-Zmiri-tree-borrows replaces [Stacked Borrows] with the [Tree Borrows] rules.
Tree Borrows is even more experimental than Stacked Borrows. While Tree Borrows
is still sound in the sense of catching all aliasing violations that current versions
of the compiler might exploit, it is likely that the eventual final aliasing model
of Rust will be stricter than Tree Borrows. In other words, if you use Tree Borrows,
even if your code is accepted today, it might be declared UB in the future.
This is much less likely with Stacked Borrows.
-Zmiri-tree-borrows-no-precise-interior-mut makes Tree Borrows-Zmiri-force-page-size=<num> overrides the default page size for an architecture, in multiples of 1k.4 is default for most targets. This value should always be a power of 2 and nonzero.
Some native rustc -Z flags are also very relevant for Miri:
-Zmir-opt-level controls how many MIR optimizations are performed. Miri0; be advised that using any higher level can
make Miri miss bugs in your program because they got optimized away.
-Zalways-encode-mir makes rustc dump MIR even for completely monomorphic-Zmir-emit-retag controls whether Retag statements are emitted. MiriMoreover, Miri recognizes some environment variables:
MIRIFLAGS defines extra flags to be passed to Miri.MIRI_LIB_SRC defines the directory where Miri expects the sources of the standard library thatlibrary subdirectory
of a rust-lang/rust repository checkout.
MIRI_SYSROOT indicates the sysroot to use. When using cargo miri test/cargo miri run, this skips the automaticcargo miri setup, this indicates where the sysroot will be put.
MIRI_NO_STD makes sure that the target's sysroot is built without libstd. This allows testingextern functionsMiri provides some extern functions that programs can import to access
Miri-specific functionality. They are declared in
/tests/utils/miri\extern.rs.
Binaries that do not use the standard library are expected to declare a function like this so that Miri knows where it is supposed to start execution:
#[cfg(miri)]
#[unsafe(no_mangle)]
fn miri_start(argc: isize, argv: *const *const u8) -> isize {
// Call the actual start function that your project implements, based on your target's conventions.
}
If you want to contribute to Miri, great! Please check out our contribution guide.
For help with running Miri, you can open an issue here on GitHub or use the Miri stream on the Rust Zulip.
This project began as part of an undergraduate research course in 2015 by
@solson at the University of Saskatchewan. There are [slides] and a
[report] available from that project. In 2016, @oli-obk joined to prepare Miri
for eventually being used as const evaluator in the Rust compiler itself
(basically, for const and static stuff), replacing the old evaluator that
worked directly on the AST. In 2017, @RalfJung did an internship with Mozilla
and began developing Miri towards a tool for detecting undefined behavior, and
also using Miri as a way to explore the consequences of various possible
definitions for undefined behavior in Rust. @oli-obk's move of the Miri engine
into the compiler finally came to completion in early 2018. Meanwhile, later
that year, @RalfJung did a second internship, developing Miri further with
support for checking basic type invariants and verifying that references are
used according to their aliasing restrictions.
Miri has already found a number of bugs in the Rust standard library and beyond, some of which we collect here. If Miri helped you find a subtle UB bug in your code, we'd appreciate a PR adding it to the list!
Definite bugs found:
Debug for vec_deque::Iter accessing uninitialized memoryVec::into_iter doing an unaligned ZST readFrom<&[T]> for Rc creating a not sufficiently aligned referenceBTreeMap creating a shared reference pointing to a too small allocationVec::append creating a dangling referencestr turning a shared reference into a mutable onerand performing unaligned readsposix_memalign in an invalid waygetrandom calling the getrandom syscall in an invalid wayVec and BTreeMap leaking memory under some (panicky) conditionsbeef leaking memoryEbrCell using uninitialized memory incorrectlyservo_arc creating a dangling shared referenceencoding_rs doing out-of-bounds pointer arithmeticVec::from_raw_parts incorrectlyAtomicPtr and Box::from_raw_inThinVeccrossbeam-epoch calling assume_init on a partly-initialized MaybeUninitinteger-encoding dereferencing a misaligned pointerrkyv constructing a Box<[u8]> from an overaligned allocationarc-swapthread::scoperegex incorrectly handling unaligned Vec<u8> bufferscompare_exchange_weak in once_cellvec::IntoIterIterator::collectportable-atomic-utilstd::mpsc channels (original code in crossbeam)RwLock::downgrade implementation (caught by Miri before it landed in the Rust repo)std::io::Read::read, even if all expectations are satisfied (caught by Miri running Tokio's test suite)ReentrantLock not correctly dealing with reuse of addresses for TLS storage of different threadswinit registering a global constructor with the wrong ABI on WindowsVecDeque::drain creating overlapping mutable referencesBTreeMap problemsBTreeMap node insertion using raw pointers outside their valid memory areaLinkedList cursor insertion creating overlapping mutable referencesVec::push invalidating existing references into the vectoralign_to_mut violating uniqueness of mutable referencessized-chunks creating aliasing mutable referencesString::push_str invalidating existing references into the stringryu using raw pointers outside their valid memory areaEnv iterator using a raw pointer outside its valid memory areaVecDeque::iter_mut creating overlapping mutable references<[T]>::copy_within using a loan after invalidating itLicensed under either of
at your option.
Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you shall be dual licensed as above, without any additional terms or conditions.