A production-ready, all-in-one Docker image designed for AI agents and autonomous systems that need to execute code across multiple programming languages.
https://github.com/langgenius/dify-agentbox.git
A production-ready, all-in-one Docker image designed for AI agents and autonomous systems that need to execute code across multiple programming languages.
AI agents often need to:
docker run -it --rm -v $(pwd):/workspace langgenius/dify-agentbox:latest
Multi-arch images (amd64/arm64) are published and tagged with the full git SHA plus latest.
dify-agentbox/
โโโ versions/versions.yaml # Version configuration for all packages
โโโ Dockerfile.j2 # Jinja2 template for generating Dockerfile
โโโ build.py # Build script to render and build images
โโโ .github/workflows/ # CI/CD automation
1. Update Package Versions
Edit versions/versions.yaml:
languages:
python:
version: "3.12"
nodejs:
version: "20"
python_packages:
- name: "pandas[excel,html,xml]"
version: "~=2.2.3"
2. Render & build locally (multi-arch)
# Install dependencies
uv sync
# Render Dockerfile
uv run python build.py
# Build multi-arch image with git SHA tag
TAG=$(git rev-parse --short HEAD)
docker buildx build --platform linux/amd64,linux/arm64 -t langgenius/dify-agentbox:${TAG} .
3. Test Changes
# Run the image
docker run -it --rm langgenius/dify-agentbox:${TAG}
# Verify installations
python --version
node --version
go version
Images are automatically built and pushed when:
latestv1.0.0): Builds and tags with semantic versionSystem packages (apt):
system_packages:
utilities:
- your-package-name
Python packages:
python_packages:
- name: "your-package"
version: "~=1.0.0"
Node.js packages:
nodejs_packages:
- your-global-package
After making changes, rebuild and test locally before pushing.
Apache 2.0