๐Ÿ“ฆ robzwolf / sm-image-processing

๐Ÿ“„ cv2.py ยท 10788 lines
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788# encoding: utf-8
# module cv2.cv2
# from D:\Robbie\Documents\dev\sm-image-processing\venv1\lib\site-packages\cv2\cv2.cp36-win32.pyd
# by generator 1.145
""" Python wrapper for OpenCV. """

# imports
import cv2.cv2 as  # D:\Robbie\Documents\dev\sm-image-processing\venv1\lib\site-packages\cv2\cv2.cp36-win32.pyd
import cv2.Error as Error # <module 'cv2.Error'>
import cv2.detail as detail # <module 'cv2.detail'>
import cv2.dnn as dnn # <module 'cv2.dnn'>
import cv2.fisheye as fisheye # <module 'cv2.fisheye'>
import cv2.flann as flann # <module 'cv2.flann'>
import cv2.instr as instr # <module 'cv2.instr'>
import cv2.ipp as ipp # <module 'cv2.ipp'>
import cv2.ml as ml # <module 'cv2.ml'>
import cv2.ocl as ocl # <module 'cv2.ocl'>
import cv2.ogl as ogl # <module 'cv2.ogl'>
import cv2.videostab as videostab # <module 'cv2.videostab'>

# Variables with simple values

ACCESS_FAST = 67108864
ACCESS_MASK = 50331648
ACCESS_READ = 16777216
ACCESS_RW = 50331648
ACCESS_WRITE = 33554432

ADAPTIVE_THRESH_GAUSSIAN_C = 1

ADAPTIVE_THRESH_MEAN_C = 0

AgastFeatureDetector_AGAST_5_8 = 0

AgastFeatureDetector_AGAST_7_12d = 1
AgastFeatureDetector_AGAST_7_12s = 2

AgastFeatureDetector_NONMAX_SUPPRESSION = 10001

AgastFeatureDetector_OAST_9_16 = 3

AgastFeatureDetector_THRESHOLD = 10000

AGAST_FEATURE_DETECTOR_AGAST_5_8 = 0

AGAST_FEATURE_DETECTOR_AGAST_7_12D = 1
AGAST_FEATURE_DETECTOR_AGAST_7_12S = 2

AGAST_FEATURE_DETECTOR_NONMAX_SUPPRESSION = 10001

AGAST_FEATURE_DETECTOR_OAST_9_16 = 3

AGAST_FEATURE_DETECTOR_THRESHOLD = 10000

AKAZE_DESCRIPTOR_KAZE = 3

AKAZE_DESCRIPTOR_KAZE_UPRIGHT = 2

AKAZE_DESCRIPTOR_MLDB = 5

AKAZE_DESCRIPTOR_MLDB_UPRIGHT = 4

BORDER_CONSTANT = 0
BORDER_DEFAULT = 4
BORDER_ISOLATED = 16
BORDER_REFLECT = 2
BORDER_REFLECT101 = 4

BORDER_REFLECT_101 = 4

BORDER_REPLICATE = 1
BORDER_TRANSPARENT = 5
BORDER_WRAP = 3

CALIB_CB_ADAPTIVE_THRESH = 1

CALIB_CB_ASYMMETRIC_GRID = 2

CALIB_CB_CLUSTERING = 4

CALIB_CB_FAST_CHECK = 8

CALIB_CB_FILTER_QUADS = 4

CALIB_CB_NORMALIZE_IMAGE = 2

CALIB_CB_SYMMETRIC_GRID = 1

CALIB_FIX_ASPECT_RATIO = 2

CALIB_FIX_FOCAL_LENGTH = 16

CALIB_FIX_INTRINSIC = 256
CALIB_FIX_K1 = 32
CALIB_FIX_K2 = 64
CALIB_FIX_K3 = 128
CALIB_FIX_K4 = 2048
CALIB_FIX_K5 = 4096
CALIB_FIX_K6 = 8192

CALIB_FIX_PRINCIPAL_POINT = 4

CALIB_FIX_S1_S2_S3_S4 = 65536

CALIB_FIX_TANGENT_DIST = 2097152

CALIB_FIX_TAUX_TAUY = 524288

CALIB_RATIONAL_MODEL = 16384

CALIB_SAME_FOCAL_LENGTH = 512

CALIB_THIN_PRISM_MODEL = 32768

CALIB_TILTED_MODEL = 262144

CALIB_USE_INTRINSIC_GUESS = 1

CALIB_USE_LU = 131072
CALIB_USE_QR = 1048576

CALIB_ZERO_DISPARITY = 1024

CALIB_ZERO_TANGENT_DIST = 8

CAP_ANDROID = 1000
CAP_ANY = 0
CAP_ARAVIS = 2100
CAP_AVFOUNDATION = 1200
CAP_CMU1394 = 300
CAP_DC1394 = 300
CAP_DSHOW = 700
CAP_FFMPEG = 1900
CAP_FIREWARE = 300
CAP_FIREWIRE = 300
CAP_GIGANETIX = 1300
CAP_GPHOTO2 = 1700
CAP_GSTREAMER = 1800
CAP_IEEE1394 = 300
CAP_IMAGES = 2000
CAP_INTELPERC = 1500

CAP_INTELPERC_DEPTH_GENERATOR = 536870912
CAP_INTELPERC_DEPTH_MAP = 0

CAP_INTELPERC_GENERATORS_MASK = 805306368

CAP_INTELPERC_IMAGE = 3

CAP_INTELPERC_IMAGE_GENERATOR = 268435456

CAP_INTELPERC_IR_MAP = 2

CAP_INTELPERC_UVDEPTH_MAP = 1

CAP_INTEL_MFX = 2300

CAP_MODE_BGR = 0
CAP_MODE_GRAY = 2
CAP_MODE_RGB = 1
CAP_MODE_YUYV = 3

CAP_MSMF = 1400

CAP_OPENCV_MJPEG = 2200

CAP_OPENNI = 900
CAP_OPENNI2 = 1600

CAP_OPENNI2_ASUS = 1610

CAP_OPENNI_ASUS = 910

CAP_OPENNI_BGR_IMAGE = 5

CAP_OPENNI_DEPTH_GENERATOR = -2147483648

CAP_OPENNI_DEPTH_GENERATOR_BASELINE = -2147483546

CAP_OPENNI_DEPTH_GENERATOR_FOCAL_LENGTH = -2147483545

CAP_OPENNI_DEPTH_GENERATOR_PRESENT = -2147483539
CAP_OPENNI_DEPTH_GENERATOR_REGISTRATION = -2147483544

CAP_OPENNI_DEPTH_GENERATOR_REGISTRATION_ON = -2147483544

CAP_OPENNI_DEPTH_MAP = 0

CAP_OPENNI_DISPARITY_MAP = 2

CAP_OPENNI_DISPARITY_MAP_32F = 3

CAP_OPENNI_GENERATORS_MASK = -536870912

CAP_OPENNI_GRAY_IMAGE = 6

CAP_OPENNI_IMAGE_GENERATOR = 1073741824

CAP_OPENNI_IMAGE_GENERATOR_OUTPUT_MODE = 1073741924

CAP_OPENNI_IMAGE_GENERATOR_PRESENT = 1073741933

CAP_OPENNI_IR_GENERATOR = 536870912

CAP_OPENNI_IR_GENERATOR_PRESENT = 536871021

CAP_OPENNI_IR_IMAGE = 7

CAP_OPENNI_POINT_CLOUD_MAP = 1

CAP_OPENNI_QVGA_30HZ = 3
CAP_OPENNI_QVGA_60HZ = 4

CAP_OPENNI_SXGA_15HZ = 1
CAP_OPENNI_SXGA_30HZ = 2

CAP_OPENNI_VALID_DEPTH_MASK = 4

CAP_OPENNI_VGA_30HZ = 0

CAP_PROP_APERTURE = 17008
CAP_PROP_AUTOFOCUS = 39

CAP_PROP_AUTO_EXPOSURE = 21

CAP_PROP_BACKLIGHT = 32
CAP_PROP_BRIGHTNESS = 10
CAP_PROP_BUFFERSIZE = 38
CAP_PROP_CONTRAST = 11

CAP_PROP_CONVERT_RGB = 16

CAP_PROP_DC1394_MAX = 31

CAP_PROP_DC1394_MODE_AUTO = -2
CAP_PROP_DC1394_MODE_MANUAL = -3

CAP_PROP_DC1394_MODE_ONE_PUSH_AUTO = -1

CAP_PROP_DC1394_OFF = -4

CAP_PROP_EXPOSURE = 15
CAP_PROP_EXPOSUREPROGRAM = 17009
CAP_PROP_FOCUS = 28
CAP_PROP_FORMAT = 8
CAP_PROP_FOURCC = 6
CAP_PROP_FPS = 5

CAP_PROP_FRAME_COUNT = 7
CAP_PROP_FRAME_HEIGHT = 4
CAP_PROP_FRAME_WIDTH = 3

CAP_PROP_GAIN = 14
CAP_PROP_GAMMA = 22

CAP_PROP_GIGA_FRAME_HEIGH_MAX = 10004

CAP_PROP_GIGA_FRAME_OFFSET_X = 10001
CAP_PROP_GIGA_FRAME_OFFSET_Y = 10002

CAP_PROP_GIGA_FRAME_SENS_HEIGH = 10006
CAP_PROP_GIGA_FRAME_SENS_WIDTH = 10005

CAP_PROP_GIGA_FRAME_WIDTH_MAX = 10003

CAP_PROP_GPHOTO2_COLLECT_MSGS = 17005

CAP_PROP_GPHOTO2_FLUSH_MSGS = 17006

CAP_PROP_GPHOTO2_PREVIEW = 17001

CAP_PROP_GPHOTO2_RELOAD_CONFIG = 17003

CAP_PROP_GPHOTO2_RELOAD_ON_CHANGE = 17004

CAP_PROP_GPHOTO2_WIDGET_ENUMERATE = 17002

CAP_PROP_GSTREAMER_QUEUE_LENGTH = 200

CAP_PROP_GUID = 29
CAP_PROP_HUE = 13

CAP_PROP_IMAGES_BASE = 18000
CAP_PROP_IMAGES_LAST = 19000

CAP_PROP_INTELPERC_DEPTH_CONFIDENCE_THRESHOLD = 11005

CAP_PROP_INTELPERC_DEPTH_FOCAL_LENGTH_HORZ = 11006
CAP_PROP_INTELPERC_DEPTH_FOCAL_LENGTH_VERT = 11007

CAP_PROP_INTELPERC_DEPTH_LOW_CONFIDENCE_VALUE = 11003

CAP_PROP_INTELPERC_DEPTH_SATURATION_VALUE = 11004

CAP_PROP_INTELPERC_PROFILE_COUNT = 11001
CAP_PROP_INTELPERC_PROFILE_IDX = 11002

CAP_PROP_IOS_DEVICE_EXPOSURE = 9002
CAP_PROP_IOS_DEVICE_FLASH = 9003
CAP_PROP_IOS_DEVICE_FOCUS = 9001
CAP_PROP_IOS_DEVICE_TORCH = 9005
CAP_PROP_IOS_DEVICE_WHITEBALANCE = 9004

CAP_PROP_IRIS = 36

CAP_PROP_ISO_SPEED = 30

CAP_PROP_MODE = 9
CAP_PROP_MONOCHROME = 19

CAP_PROP_OPENNI2_MIRROR = 111
CAP_PROP_OPENNI2_SYNC = 110

CAP_PROP_OPENNI_APPROX_FRAME_SYNC = 105

CAP_PROP_OPENNI_BASELINE = 102

CAP_PROP_OPENNI_CIRCLE_BUFFER = 107

CAP_PROP_OPENNI_FOCAL_LENGTH = 103

CAP_PROP_OPENNI_FRAME_MAX_DEPTH = 101

CAP_PROP_OPENNI_GENERATOR_PRESENT = 109

CAP_PROP_OPENNI_MAX_BUFFER_SIZE = 106

CAP_PROP_OPENNI_MAX_TIME_DURATION = 108

CAP_PROP_OPENNI_OUTPUT_MODE = 100

CAP_PROP_OPENNI_REGISTRATION = 104

CAP_PROP_OPENNI_REGISTRATION_ON = 104

CAP_PROP_PAN = 33

CAP_PROP_POS_AVI_RATIO = 2

CAP_PROP_POS_FRAMES = 1
CAP_PROP_POS_MSEC = 0

CAP_PROP_PVAPI_BINNINGX = 304
CAP_PROP_PVAPI_BINNINGY = 305
CAP_PROP_PVAPI_DECIMATIONHORIZONTAL = 302
CAP_PROP_PVAPI_DECIMATIONVERTICAL = 303
CAP_PROP_PVAPI_FRAMESTARTTRIGGERMODE = 301
CAP_PROP_PVAPI_MULTICASTIP = 300
CAP_PROP_PVAPI_PIXELFORMAT = 306

CAP_PROP_RECTIFICATION = 18
CAP_PROP_ROLL = 35
CAP_PROP_SATURATION = 12
CAP_PROP_SETTINGS = 37
CAP_PROP_SHARPNESS = 20
CAP_PROP_SPEED = 17007
CAP_PROP_TEMPERATURE = 23
CAP_PROP_TILT = 34
CAP_PROP_TRIGGER = 24

CAP_PROP_TRIGGER_DELAY = 25

CAP_PROP_VIEWFINDER = 17010

CAP_PROP_WHITE_BALANCE_BLUE_U = 17

CAP_PROP_WHITE_BALANCE_RED_V = 26

CAP_PROP_XI_ACQ_BUFFER_SIZE = 548

CAP_PROP_XI_ACQ_BUFFER_SIZE_UNIT = 549

CAP_PROP_XI_ACQ_FRAME_BURST_COUNT = 499

CAP_PROP_XI_ACQ_TIMING_MODE = 538

CAP_PROP_XI_ACQ_TRANSPORT_BUFFER_COMMIT = 552
CAP_PROP_XI_ACQ_TRANSPORT_BUFFER_SIZE = 550

CAP_PROP_XI_AEAG = 415

CAP_PROP_XI_AEAG_LEVEL = 419

CAP_PROP_XI_AEAG_ROI_HEIGHT = 442

CAP_PROP_XI_AEAG_ROI_OFFSET_X = 439
CAP_PROP_XI_AEAG_ROI_OFFSET_Y = 440

CAP_PROP_XI_AEAG_ROI_WIDTH = 441

CAP_PROP_XI_AE_MAX_LIMIT = 417

CAP_PROP_XI_AG_MAX_LIMIT = 418

CAP_PROP_XI_APPLY_CMS = 471

CAP_PROP_XI_AUTO_BANDWIDTH_CALCULATION = 573

CAP_PROP_XI_AUTO_WB = 414

CAP_PROP_XI_AVAILABLE_BANDWIDTH = 539

CAP_PROP_XI_BINNING_HORIZONTAL = 429
CAP_PROP_XI_BINNING_PATTERN = 430
CAP_PROP_XI_BINNING_SELECTOR = 427
CAP_PROP_XI_BINNING_VERTICAL = 428

CAP_PROP_XI_BPC = 445

CAP_PROP_XI_BUFFERS_QUEUE_SIZE = 551

CAP_PROP_XI_BUFFER_POLICY = 540

CAP_PROP_XI_CC_MATRIX_00 = 479
CAP_PROP_XI_CC_MATRIX_01 = 480
CAP_PROP_XI_CC_MATRIX_02 = 481
CAP_PROP_XI_CC_MATRIX_03 = 482
CAP_PROP_XI_CC_MATRIX_10 = 483
CAP_PROP_XI_CC_MATRIX_11 = 484
CAP_PROP_XI_CC_MATRIX_12 = 485
CAP_PROP_XI_CC_MATRIX_13 = 486
CAP_PROP_XI_CC_MATRIX_20 = 487
CAP_PROP_XI_CC_MATRIX_21 = 488
CAP_PROP_XI_CC_MATRIX_22 = 489
CAP_PROP_XI_CC_MATRIX_23 = 490
CAP_PROP_XI_CC_MATRIX_30 = 491
CAP_PROP_XI_CC_MATRIX_31 = 492
CAP_PROP_XI_CC_MATRIX_32 = 493
CAP_PROP_XI_CC_MATRIX_33 = 494

CAP_PROP_XI_CHIP_TEMP = 468

CAP_PROP_XI_CMS = 470

CAP_PROP_XI_COLOR_FILTER_ARRAY = 475

CAP_PROP_XI_COLUMN_FPN_CORRECTION = 555

CAP_PROP_XI_COOLING = 466

CAP_PROP_XI_COUNTER_SELECTOR = 536
CAP_PROP_XI_COUNTER_VALUE = 537

CAP_PROP_XI_DATA_FORMAT = 401

CAP_PROP_XI_DEBOUNCE_EN = 507
CAP_PROP_XI_DEBOUNCE_POL = 510
CAP_PROP_XI_DEBOUNCE_T0 = 508
CAP_PROP_XI_DEBOUNCE_T1 = 509

CAP_PROP_XI_DEBUG_LEVEL = 572

CAP_PROP_XI_DECIMATION_HORIZONTAL = 433
CAP_PROP_XI_DECIMATION_PATTERN = 434
CAP_PROP_XI_DECIMATION_SELECTOR = 431
CAP_PROP_XI_DECIMATION_VERTICAL = 432

CAP_PROP_XI_DEFAULT_CC_MATRIX = 495

CAP_PROP_XI_DEVICE_MODEL_ID = 521

CAP_PROP_XI_DEVICE_RESET = 554
CAP_PROP_XI_DEVICE_SN = 522

CAP_PROP_XI_DOWNSAMPLING = 400

CAP_PROP_XI_DOWNSAMPLING_TYPE = 426

CAP_PROP_XI_EXPOSURE = 421

CAP_PROP_XI_EXPOSURE_BURST_COUNT = 422

CAP_PROP_XI_EXP_PRIORITY = 416

CAP_PROP_XI_FFS_ACCESS_KEY = 583

CAP_PROP_XI_FFS_FILE_ID = 594
CAP_PROP_XI_FFS_FILE_SIZE = 580

CAP_PROP_XI_FRAMERATE = 535

CAP_PROP_XI_FREE_FFS_SIZE = 581

CAP_PROP_XI_GAIN = 424

CAP_PROP_XI_GAIN_SELECTOR = 423

CAP_PROP_XI_GAMMAC = 477
CAP_PROP_XI_GAMMAY = 476

CAP_PROP_XI_GPI_LEVEL = 408
CAP_PROP_XI_GPI_MODE = 407
CAP_PROP_XI_GPI_SELECTOR = 406

CAP_PROP_XI_GPO_MODE = 410
CAP_PROP_XI_GPO_SELECTOR = 409

CAP_PROP_XI_HDR = 559

CAP_PROP_XI_HDR_KNEEPOINT_COUNT = 560

CAP_PROP_XI_HDR_T1 = 561
CAP_PROP_XI_HDR_T2 = 562

CAP_PROP_XI_HEIGHT = 452

CAP_PROP_XI_HOUS_BACK_SIDE_TEMP = 590

CAP_PROP_XI_HOUS_TEMP = 469

CAP_PROP_XI_HW_REVISION = 571

CAP_PROP_XI_IMAGE_BLACK_LEVEL = 565

CAP_PROP_XI_IMAGE_DATA_BIT_DEPTH = 462

CAP_PROP_XI_IMAGE_DATA_FORMAT = 435

CAP_PROP_XI_IMAGE_DATA_FORMAT_RGB32_ALPHA = 529

CAP_PROP_XI_IMAGE_IS_COLOR = 474

CAP_PROP_XI_IMAGE_PAYLOAD_SIZE = 530

CAP_PROP_XI_IS_COOLED = 465

CAP_PROP_XI_IS_DEVICE_EXIST = 547

CAP_PROP_XI_KNEEPOINT1 = 563
CAP_PROP_XI_KNEEPOINT2 = 564

CAP_PROP_XI_LED_MODE = 412
CAP_PROP_XI_LED_SELECTOR = 411

CAP_PROP_XI_LENS_APERTURE_VALUE = 512

CAP_PROP_XI_LENS_FEATURE = 518

CAP_PROP_XI_LENS_FEATURE_SELECTOR = 517

CAP_PROP_XI_LENS_FOCAL_LENGTH = 516

CAP_PROP_XI_LENS_FOCUS_DISTANCE = 515
CAP_PROP_XI_LENS_FOCUS_MOVE = 514

CAP_PROP_XI_LENS_FOCUS_MOVEMENT_VALUE = 513

CAP_PROP_XI_LENS_MODE = 511

CAP_PROP_XI_LIMIT_BANDWIDTH = 459

CAP_PROP_XI_LUT_EN = 541
CAP_PROP_XI_LUT_INDEX = 542
CAP_PROP_XI_LUT_VALUE = 543

CAP_PROP_XI_MANUAL_WB = 413

CAP_PROP_XI_OFFSET_X = 402
CAP_PROP_XI_OFFSET_Y = 403

CAP_PROP_XI_OUTPUT_DATA_BIT_DEPTH = 461

CAP_PROP_XI_OUTPUT_DATA_PACKING = 463

CAP_PROP_XI_OUTPUT_DATA_PACKING_TYPE = 464

CAP_PROP_XI_RECENT_FRAME = 553

CAP_PROP_XI_REGION_MODE = 595
CAP_PROP_XI_REGION_SELECTOR = 589

CAP_PROP_XI_ROW_FPN_CORRECTION = 591

CAP_PROP_XI_SENSOR_BOARD_TEMP = 596

CAP_PROP_XI_SENSOR_CLOCK_FREQ_HZ = 532
CAP_PROP_XI_SENSOR_CLOCK_FREQ_INDEX = 533

CAP_PROP_XI_SENSOR_DATA_BIT_DEPTH = 460

CAP_PROP_XI_SENSOR_FEATURE_SELECTOR = 585
CAP_PROP_XI_SENSOR_FEATURE_VALUE = 586

CAP_PROP_XI_SENSOR_MODE = 558

CAP_PROP_XI_SENSOR_OUTPUT_CHANNEL_COUNT = 534

CAP_PROP_XI_SENSOR_TAPS = 437

CAP_PROP_XI_SHARPNESS = 478

CAP_PROP_XI_SHUTTER_TYPE = 436

CAP_PROP_XI_TARGET_TEMP = 467

CAP_PROP_XI_TEST_PATTERN = 588

CAP_PROP_XI_TEST_PATTERN_GENERATOR_SELECTOR = 587

CAP_PROP_XI_TIMEOUT = 420

CAP_PROP_XI_TRANSPORT_PIXEL_FORMAT = 531

CAP_PROP_XI_TRG_DELAY = 544
CAP_PROP_XI_TRG_SELECTOR = 498
CAP_PROP_XI_TRG_SOFTWARE = 405
CAP_PROP_XI_TRG_SOURCE = 404

CAP_PROP_XI_TS_RST_MODE = 545
CAP_PROP_XI_TS_RST_SOURCE = 546

CAP_PROP_XI_USED_FFS_SIZE = 582

CAP_PROP_XI_WB_KB = 450
CAP_PROP_XI_WB_KG = 449
CAP_PROP_XI_WB_KR = 448

CAP_PROP_XI_WIDTH = 451

CAP_PROP_ZOOM = 27

CAP_PVAPI = 800

CAP_PVAPI_DECIMATION_2OUTOF16 = 8
CAP_PVAPI_DECIMATION_2OUTOF4 = 2
CAP_PVAPI_DECIMATION_2OUTOF8 = 4
CAP_PVAPI_DECIMATION_OFF = 1

CAP_PVAPI_FSTRIGMODE_FIXEDRATE = 3
CAP_PVAPI_FSTRIGMODE_FREERUN = 0
CAP_PVAPI_FSTRIGMODE_SOFTWARE = 4
CAP_PVAPI_FSTRIGMODE_SYNCIN1 = 1
CAP_PVAPI_FSTRIGMODE_SYNCIN2 = 2

CAP_PVAPI_PIXELFORMAT_BAYER16 = 4
CAP_PVAPI_PIXELFORMAT_BAYER8 = 3
CAP_PVAPI_PIXELFORMAT_BGR24 = 6
CAP_PVAPI_PIXELFORMAT_BGRA32 = 8
CAP_PVAPI_PIXELFORMAT_MONO16 = 2
CAP_PVAPI_PIXELFORMAT_MONO8 = 1
CAP_PVAPI_PIXELFORMAT_RGB24 = 5
CAP_PVAPI_PIXELFORMAT_RGBA32 = 7

CAP_QT = 500
CAP_UNICAP = 600
CAP_V4L = 200
CAP_V4L2 = 200
CAP_VFW = 200
CAP_WINRT = 1410
CAP_XIAPI = 1100

CASCADE_DO_CANNY_PRUNING = 1

CASCADE_DO_ROUGH_SEARCH = 8

CASCADE_FIND_BIGGEST_OBJECT = 4

CASCADE_SCALE_IMAGE = 2

CCL_DEFAULT = -1
CCL_GRANA = 1
CCL_WU = 0

CC_STAT_AREA = 4
CC_STAT_HEIGHT = 3
CC_STAT_LEFT = 0
CC_STAT_MAX = 5
CC_STAT_TOP = 1
CC_STAT_WIDTH = 2

CHAIN_APPROX_NONE = 1
CHAIN_APPROX_SIMPLE = 2

CHAIN_APPROX_TC89_KCOS = 4
CHAIN_APPROX_TC89_L1 = 3

CirclesGridFinderParameters_ASYMMETRIC_GRID = 1

CirclesGridFinderParameters_SYMMETRIC_GRID = 0

CIRCLES_GRID_FINDER_PARAMETERS_ASYMMETRIC_GRID = 1

CIRCLES_GRID_FINDER_PARAMETERS_SYMMETRIC_GRID = 0

CMP_EQ = 0
CMP_GE = 2
CMP_GT = 1
CMP_LE = 4
CMP_LT = 3
CMP_NE = 5

COLORMAP_AUTUMN = 0
COLORMAP_BONE = 1
COLORMAP_COOL = 8
COLORMAP_HOT = 11
COLORMAP_HSV = 9
COLORMAP_JET = 2
COLORMAP_OCEAN = 5
COLORMAP_PARULA = 12
COLORMAP_PINK = 10
COLORMAP_RAINBOW = 4
COLORMAP_SPRING = 7
COLORMAP_SUMMER = 6
COLORMAP_WINTER = 3

COLOR_BayerBG2BGR = 46
COLOR_BayerBG2BGRA = 139

COLOR_BayerBG2BGR_EA = 135
COLOR_BayerBG2BGR_VNG = 62

COLOR_BayerBG2GRAY = 86
COLOR_BayerBG2RGB = 48
COLOR_BayerBG2RGBA = 141

COLOR_BayerBG2RGB_EA = 137
COLOR_BayerBG2RGB_VNG = 64

COLOR_BayerGB2BGR = 47
COLOR_BayerGB2BGRA = 140

COLOR_BayerGB2BGR_EA = 136
COLOR_BayerGB2BGR_VNG = 63

COLOR_BayerGB2GRAY = 87
COLOR_BayerGB2RGB = 49
COLOR_BayerGB2RGBA = 142

COLOR_BayerGB2RGB_EA = 138
COLOR_BayerGB2RGB_VNG = 65

COLOR_BayerGR2BGR = 49
COLOR_BayerGR2BGRA = 142

COLOR_BayerGR2BGR_EA = 138
COLOR_BayerGR2BGR_VNG = 65

COLOR_BayerGR2GRAY = 89
COLOR_BayerGR2RGB = 47
COLOR_BayerGR2RGBA = 140

COLOR_BayerGR2RGB_EA = 136
COLOR_BayerGR2RGB_VNG = 63

COLOR_BayerRG2BGR = 48
COLOR_BayerRG2BGRA = 141

COLOR_BayerRG2BGR_EA = 137
COLOR_BayerRG2BGR_VNG = 64

COLOR_BayerRG2GRAY = 88
COLOR_BayerRG2RGB = 46
COLOR_BayerRG2RGBA = 139

COLOR_BayerRG2RGB_EA = 135
COLOR_BayerRG2RGB_VNG = 62

COLOR_BAYER_BG2BGR = 46
COLOR_BAYER_BG2BGRA = 139

COLOR_BAYER_BG2BGR_EA = 135
COLOR_BAYER_BG2BGR_VNG = 62

COLOR_BAYER_BG2GRAY = 86
COLOR_BAYER_BG2RGB = 48
COLOR_BAYER_BG2RGBA = 141

COLOR_BAYER_BG2RGB_EA = 137
COLOR_BAYER_BG2RGB_VNG = 64

COLOR_BAYER_GB2BGR = 47
COLOR_BAYER_GB2BGRA = 140

COLOR_BAYER_GB2BGR_EA = 136
COLOR_BAYER_GB2BGR_VNG = 63

COLOR_BAYER_GB2GRAY = 87
COLOR_BAYER_GB2RGB = 49
COLOR_BAYER_GB2RGBA = 142

COLOR_BAYER_GB2RGB_EA = 138
COLOR_BAYER_GB2RGB_VNG = 65

COLOR_BAYER_GR2BGR = 49
COLOR_BAYER_GR2BGRA = 142

COLOR_BAYER_GR2BGR_EA = 138
COLOR_BAYER_GR2BGR_VNG = 65

COLOR_BAYER_GR2GRAY = 89
COLOR_BAYER_GR2RGB = 47
COLOR_BAYER_GR2RGBA = 140

COLOR_BAYER_GR2RGB_EA = 136
COLOR_BAYER_GR2RGB_VNG = 63

COLOR_BAYER_RG2BGR = 48
COLOR_BAYER_RG2BGRA = 141

COLOR_BAYER_RG2BGR_EA = 137
COLOR_BAYER_RG2BGR_VNG = 64

COLOR_BAYER_RG2GRAY = 88
COLOR_BAYER_RG2RGB = 46
COLOR_BAYER_RG2RGBA = 139

COLOR_BAYER_RG2RGB_EA = 135
COLOR_BAYER_RG2RGB_VNG = 62

COLOR_BGR2BGR555 = 22
COLOR_BGR2BGR565 = 12
COLOR_BGR2BGRA = 0
COLOR_BGR2GRAY = 6
COLOR_BGR2HLS = 52

COLOR_BGR2HLS_FULL = 68

COLOR_BGR2HSV = 40

COLOR_BGR2HSV_FULL = 66

COLOR_BGR2Lab = 44
COLOR_BGR2LAB = 44
COLOR_BGR2Luv = 50
COLOR_BGR2LUV = 50
COLOR_BGR2RGB = 4
COLOR_BGR2RGBA = 2
COLOR_BGR2XYZ = 32
COLOR_BGR2YCrCb = 36

COLOR_BGR2YCR_CB = 36

COLOR_BGR2YUV = 82

COLOR_BGR2YUV_I420 = 128
COLOR_BGR2YUV_IYUV = 128
COLOR_BGR2YUV_YV12 = 132

COLOR_BGR5552BGR = 24
COLOR_BGR5552BGRA = 28
COLOR_BGR5552GRAY = 31
COLOR_BGR5552RGB = 25
COLOR_BGR5552RGBA = 29
COLOR_BGR5652BGR = 14
COLOR_BGR5652BGRA = 18
COLOR_BGR5652GRAY = 21
COLOR_BGR5652RGB = 15
COLOR_BGR5652RGBA = 19
COLOR_BGRA2BGR = 1
COLOR_BGRA2BGR555 = 26
COLOR_BGRA2BGR565 = 16
COLOR_BGRA2GRAY = 10
COLOR_BGRA2RGB = 3
COLOR_BGRA2RGBA = 5

COLOR_BGRA2YUV_I420 = 130
COLOR_BGRA2YUV_IYUV = 130
COLOR_BGRA2YUV_YV12 = 134

COLOR_COLORCVT_MAX = 143

COLOR_GRAY2BGR = 8
COLOR_GRAY2BGR555 = 30
COLOR_GRAY2BGR565 = 20
COLOR_GRAY2BGRA = 9
COLOR_GRAY2RGB = 8
COLOR_GRAY2RGBA = 9
COLOR_HLS2BGR = 60

COLOR_HLS2BGR_FULL = 72

COLOR_HLS2RGB = 61

COLOR_HLS2RGB_FULL = 73

COLOR_HSV2BGR = 54

COLOR_HSV2BGR_FULL = 70

COLOR_HSV2RGB = 55

COLOR_HSV2RGB_FULL = 71

COLOR_Lab2BGR = 56
COLOR_LAB2BGR = 56
COLOR_Lab2LBGR = 78
COLOR_LAB2LBGR = 78
COLOR_Lab2LRGB = 79
COLOR_LAB2LRGB = 79
COLOR_Lab2RGB = 57
COLOR_LAB2RGB = 57
COLOR_LBGR2Lab = 74
COLOR_LBGR2LAB = 74
COLOR_LBGR2Luv = 76
COLOR_LBGR2LUV = 76
COLOR_LRGB2Lab = 75
COLOR_LRGB2LAB = 75
COLOR_LRGB2Luv = 77
COLOR_LRGB2LUV = 77
COLOR_Luv2BGR = 58
COLOR_LUV2BGR = 58
COLOR_Luv2LBGR = 80
COLOR_LUV2LBGR = 80
COLOR_Luv2LRGB = 81
COLOR_LUV2LRGB = 81
COLOR_Luv2RGB = 59
COLOR_LUV2RGB = 59
COLOR_mRGBA2RGBA = 126

COLOR_M_RGBA2RGBA = 126

COLOR_RGB2BGR = 4
COLOR_RGB2BGR555 = 23
COLOR_RGB2BGR565 = 13
COLOR_RGB2BGRA = 2
COLOR_RGB2GRAY = 7
COLOR_RGB2HLS = 53

COLOR_RGB2HLS_FULL = 69

COLOR_RGB2HSV = 41

COLOR_RGB2HSV_FULL = 67

COLOR_RGB2Lab = 45
COLOR_RGB2LAB = 45
COLOR_RGB2Luv = 51
COLOR_RGB2LUV = 51
COLOR_RGB2RGBA = 0
COLOR_RGB2XYZ = 33
COLOR_RGB2YCrCb = 37

COLOR_RGB2YCR_CB = 37

COLOR_RGB2YUV = 83

COLOR_RGB2YUV_I420 = 127
COLOR_RGB2YUV_IYUV = 127
COLOR_RGB2YUV_YV12 = 131

COLOR_RGBA2BGR = 3
COLOR_RGBA2BGR555 = 27
COLOR_RGBA2BGR565 = 17
COLOR_RGBA2BGRA = 5
COLOR_RGBA2GRAY = 11
COLOR_RGBA2mRGBA = 125

COLOR_RGBA2M_RGBA = 125

COLOR_RGBA2RGB = 1

COLOR_RGBA2YUV_I420 = 129
COLOR_RGBA2YUV_IYUV = 129
COLOR_RGBA2YUV_YV12 = 133

COLOR_XYZ2BGR = 34
COLOR_XYZ2RGB = 35
COLOR_YCrCb2BGR = 38
COLOR_YCrCb2RGB = 39

COLOR_YCR_CB2BGR = 38
COLOR_YCR_CB2RGB = 39

COLOR_YUV2BGR = 84

COLOR_YUV2BGRA_I420 = 105
COLOR_YUV2BGRA_IYUV = 105
COLOR_YUV2BGRA_NV12 = 95
COLOR_YUV2BGRA_NV21 = 97
COLOR_YUV2BGRA_UYNV = 112
COLOR_YUV2BGRA_UYVY = 112
COLOR_YUV2BGRA_Y422 = 112
COLOR_YUV2BGRA_YUNV = 120
COLOR_YUV2BGRA_YUY2 = 120
COLOR_YUV2BGRA_YUYV = 120
COLOR_YUV2BGRA_YV12 = 103
COLOR_YUV2BGRA_YVYU = 122

COLOR_YUV2BGR_I420 = 101
COLOR_YUV2BGR_IYUV = 101
COLOR_YUV2BGR_NV12 = 91
COLOR_YUV2BGR_NV21 = 93
COLOR_YUV2BGR_UYNV = 108
COLOR_YUV2BGR_UYVY = 108
COLOR_YUV2BGR_Y422 = 108
COLOR_YUV2BGR_YUNV = 116
COLOR_YUV2BGR_YUY2 = 116
COLOR_YUV2BGR_YUYV = 116
COLOR_YUV2BGR_YV12 = 99
COLOR_YUV2BGR_YVYU = 118

COLOR_YUV2GRAY_420 = 106
COLOR_YUV2GRAY_I420 = 106
COLOR_YUV2GRAY_IYUV = 106
COLOR_YUV2GRAY_NV12 = 106
COLOR_YUV2GRAY_NV21 = 106
COLOR_YUV2GRAY_UYNV = 123
COLOR_YUV2GRAY_UYVY = 123
COLOR_YUV2GRAY_Y422 = 123
COLOR_YUV2GRAY_YUNV = 124
COLOR_YUV2GRAY_YUY2 = 124
COLOR_YUV2GRAY_YUYV = 124
COLOR_YUV2GRAY_YV12 = 106
COLOR_YUV2GRAY_YVYU = 124

COLOR_YUV2RGB = 85

COLOR_YUV2RGBA_I420 = 104
COLOR_YUV2RGBA_IYUV = 104
COLOR_YUV2RGBA_NV12 = 94
COLOR_YUV2RGBA_NV21 = 96
COLOR_YUV2RGBA_UYNV = 111
COLOR_YUV2RGBA_UYVY = 111
COLOR_YUV2RGBA_Y422 = 111
COLOR_YUV2RGBA_YUNV = 119
COLOR_YUV2RGBA_YUY2 = 119
COLOR_YUV2RGBA_YUYV = 119
COLOR_YUV2RGBA_YV12 = 102
COLOR_YUV2RGBA_YVYU = 121

COLOR_YUV2RGB_I420 = 100
COLOR_YUV2RGB_IYUV = 100
COLOR_YUV2RGB_NV12 = 90
COLOR_YUV2RGB_NV21 = 92
COLOR_YUV2RGB_UYNV = 107
COLOR_YUV2RGB_UYVY = 107
COLOR_YUV2RGB_Y422 = 107
COLOR_YUV2RGB_YUNV = 115
COLOR_YUV2RGB_YUY2 = 115
COLOR_YUV2RGB_YUYV = 115
COLOR_YUV2RGB_YV12 = 98
COLOR_YUV2RGB_YVYU = 117

COLOR_YUV420p2BGR = 99
COLOR_YUV420P2BGR = 99
COLOR_YUV420p2BGRA = 103
COLOR_YUV420P2BGRA = 103
COLOR_YUV420p2GRAY = 106
COLOR_YUV420P2GRAY = 106
COLOR_YUV420p2RGB = 98
COLOR_YUV420P2RGB = 98
COLOR_YUV420p2RGBA = 102
COLOR_YUV420P2RGBA = 102
COLOR_YUV420sp2BGR = 93
COLOR_YUV420SP2BGR = 93
COLOR_YUV420sp2BGRA = 97
COLOR_YUV420SP2BGRA = 97
COLOR_YUV420sp2GRAY = 106
COLOR_YUV420SP2GRAY = 106
COLOR_YUV420sp2RGB = 92
COLOR_YUV420SP2RGB = 92
COLOR_YUV420sp2RGBA = 96
COLOR_YUV420SP2RGBA = 96

CONTOURS_MATCH_I1 = 1
CONTOURS_MATCH_I2 = 2
CONTOURS_MATCH_I3 = 3

COVAR_COLS = 16
COVAR_NORMAL = 1
COVAR_ROWS = 8
COVAR_SCALE = 4
COVAR_SCRAMBLED = 0

COVAR_USE_AVG = 2

CV_16S = 3
CV_16SC1 = 3
CV_16SC2 = 11
CV_16SC3 = 19
CV_16SC4 = 27
CV_16U = 2
CV_16UC1 = 2
CV_16UC2 = 10
CV_16UC3 = 18
CV_16UC4 = 26
CV_32F = 5
CV_32FC1 = 5
CV_32FC2 = 13
CV_32FC3 = 21
CV_32FC4 = 29
CV_32S = 4
CV_32SC1 = 4
CV_32SC2 = 12
CV_32SC3 = 20
CV_32SC4 = 28
CV_64F = 6
CV_64FC1 = 6
CV_64FC2 = 14
CV_64FC3 = 22
CV_64FC4 = 30
CV_8S = 1
CV_8SC1 = 1
CV_8SC2 = 9
CV_8SC3 = 17
CV_8SC4 = 25
CV_8U = 0
CV_8UC1 = 0
CV_8UC2 = 8
CV_8UC3 = 16
CV_8UC4 = 24

DCT_INVERSE = 1
DCT_ROWS = 4

DECOMP_CHOLESKY = 3
DECOMP_EIG = 2
DECOMP_LU = 0
DECOMP_NORMAL = 16
DECOMP_QR = 4
DECOMP_SVD = 1

DescriptorMatcher_BRUTEFORCE = 2

DescriptorMatcher_BRUTEFORCE_HAMMING = 4
DescriptorMatcher_BRUTEFORCE_HAMMINGLUT = 5
DescriptorMatcher_BRUTEFORCE_L1 = 3
DescriptorMatcher_BRUTEFORCE_SL2 = 6

DescriptorMatcher_FLANNBASED = 1

DESCRIPTOR_MATCHER_BRUTEFORCE = 2

DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING = 4
DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMINGLUT = 5
DESCRIPTOR_MATCHER_BRUTEFORCE_L1 = 3
DESCRIPTOR_MATCHER_BRUTEFORCE_SL2 = 6

DESCRIPTOR_MATCHER_FLANNBASED = 1

DFT_COMPLEX_INPUT = 64
DFT_COMPLEX_OUTPUT = 16

DFT_INVERSE = 1

DFT_REAL_OUTPUT = 32

DFT_ROWS = 4
DFT_SCALE = 2

DIST_C = 3
DIST_FAIR = 5
DIST_HUBER = 7
DIST_L1 = 1
DIST_L12 = 4
DIST_L2 = 2

DIST_LABEL_CCOMP = 0
DIST_LABEL_PIXEL = 1

DIST_MASK_3 = 3
DIST_MASK_5 = 5
DIST_MASK_PRECISE = 0

DIST_USER = -1
DIST_WELSCH = 6

DrawMatchesFlags_DEFAULT = 0

DrawMatchesFlags_DRAW_OVER_OUTIMG = 1

DrawMatchesFlags_DRAW_RICH_KEYPOINTS = 4

DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS = 2

DRAW_MATCHES_FLAGS_DEFAULT = 0

DRAW_MATCHES_FLAGS_DRAW_OVER_OUTIMG = 1

DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS = 4

DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS = 2

EVENT_FLAG_ALTKEY = 32
EVENT_FLAG_CTRLKEY = 8
EVENT_FLAG_LBUTTON = 1
EVENT_FLAG_MBUTTON = 4
EVENT_FLAG_RBUTTON = 2
EVENT_FLAG_SHIFTKEY = 16

EVENT_LBUTTONDBLCLK = 7
EVENT_LBUTTONDOWN = 1
EVENT_LBUTTONUP = 4
EVENT_MBUTTONDBLCLK = 9
EVENT_MBUTTONDOWN = 3
EVENT_MBUTTONUP = 6
EVENT_MOUSEHWHEEL = 11
EVENT_MOUSEMOVE = 0
EVENT_MOUSEWHEEL = 10
EVENT_RBUTTONDBLCLK = 8
EVENT_RBUTTONDOWN = 2
EVENT_RBUTTONUP = 5

FastFeatureDetector_FAST_N = 10002

FastFeatureDetector_NONMAX_SUPPRESSION = 10001

FastFeatureDetector_THRESHOLD = 10000

FastFeatureDetector_TYPE_5_8 = 0

FastFeatureDetector_TYPE_7_12 = 1

FastFeatureDetector_TYPE_9_16 = 2

FAST_FEATURE_DETECTOR_FAST_N = 10002

FAST_FEATURE_DETECTOR_NONMAX_SUPPRESSION = 10001

FAST_FEATURE_DETECTOR_THRESHOLD = 10000

FAST_FEATURE_DETECTOR_TYPE_5_8 = 0

FAST_FEATURE_DETECTOR_TYPE_7_12 = 1

FAST_FEATURE_DETECTOR_TYPE_9_16 = 2

FileNode_EMPTY = 32
FileNode_FLOAT = 2
FileNode_FLOW = 8
FileNode_INT = 1
FileNode_MAP = 6
FileNode_NAMED = 64
FileNode_NONE = 0
FileNode_REAL = 2
FileNode_REF = 4
FileNode_SEQ = 5
FileNode_STR = 3
FileNode_STRING = 3

FileNode_TYPE_MASK = 7

FileNode_USER = 16

FileStorage_APPEND = 2
FileStorage_BASE64 = 64

FileStorage_FORMAT_AUTO = 0
FileStorage_FORMAT_JSON = 24
FileStorage_FORMAT_MASK = 56
FileStorage_FORMAT_XML = 8
FileStorage_FORMAT_YAML = 16

FileStorage_INSIDE_MAP = 4

FileStorage_MEMORY = 4

FileStorage_NAME_EXPECTED = 2

FileStorage_READ = 0
FileStorage_UNDEFINED = 0

FileStorage_VALUE_EXPECTED = 1

FileStorage_WRITE = 1

FileStorage_WRITE_BASE64 = 65

FILE_NODE_EMPTY = 32
FILE_NODE_FLOAT = 2
FILE_NODE_FLOW = 8
FILE_NODE_INT = 1
FILE_NODE_MAP = 6
FILE_NODE_NAMED = 64
FILE_NODE_NONE = 0
FILE_NODE_REAL = 2
FILE_NODE_REF = 4
FILE_NODE_SEQ = 5
FILE_NODE_STR = 3
FILE_NODE_STRING = 3

FILE_NODE_TYPE_MASK = 7

FILE_NODE_USER = 16

FILE_STORAGE_APPEND = 2
FILE_STORAGE_BASE64 = 64

FILE_STORAGE_FORMAT_AUTO = 0
FILE_STORAGE_FORMAT_JSON = 24
FILE_STORAGE_FORMAT_MASK = 56
FILE_STORAGE_FORMAT_XML = 8
FILE_STORAGE_FORMAT_YAML = 16

FILE_STORAGE_INSIDE_MAP = 4

FILE_STORAGE_MEMORY = 4

FILE_STORAGE_NAME_EXPECTED = 2

FILE_STORAGE_READ = 0
FILE_STORAGE_UNDEFINED = 0

FILE_STORAGE_VALUE_EXPECTED = 1

FILE_STORAGE_WRITE = 1

FILE_STORAGE_WRITE_BASE64 = 65

FILLED = -1

FLOODFILL_FIXED_RANGE = 65536

FLOODFILL_MASK_ONLY = 131072

FM_7POINT = 1
FM_8POINT = 2
FM_LMEDS = 4
FM_RANSAC = 8

FONT_HERSHEY_COMPLEX = 3

FONT_HERSHEY_COMPLEX_SMALL = 5

FONT_HERSHEY_DUPLEX = 2
FONT_HERSHEY_PLAIN = 1

FONT_HERSHEY_SCRIPT_COMPLEX = 7
FONT_HERSHEY_SCRIPT_SIMPLEX = 6

FONT_HERSHEY_SIMPLEX = 0
FONT_HERSHEY_TRIPLEX = 4

FONT_ITALIC = 16

Formatter_FMT_C = 5

FORMATTER_FMT_C = 5

Formatter_FMT_CSV = 2

FORMATTER_FMT_CSV = 2

Formatter_FMT_DEFAULT = 0

FORMATTER_FMT_DEFAULT = 0

Formatter_FMT_MATLAB = 1

FORMATTER_FMT_MATLAB = 1

Formatter_FMT_NUMPY = 4

FORMATTER_FMT_NUMPY = 4

Formatter_FMT_PYTHON = 3

FORMATTER_FMT_PYTHON = 3

GC_BGD = 0
GC_EVAL = 2
GC_FGD = 1

GC_INIT_WITH_MASK = 1
GC_INIT_WITH_RECT = 0

GC_PR_BGD = 2
GC_PR_FGD = 3

GEMM_1_T = 1

GEMM_2_T = 2

GEMM_3_T = 4

Hamming_normType = 6

HAMMING_NORM_TYPE = 6

HISTCMP_BHATTACHARYYA = 3
HISTCMP_CHISQR = 1

HISTCMP_CHISQR_ALT = 4

HISTCMP_CORREL = 0
HISTCMP_HELLINGER = 3
HISTCMP_INTERSECT = 2

HISTCMP_KL_DIV = 5

HOGDescriptor_DEFAULT_NLEVELS = 64

HOGDESCRIPTOR_DEFAULT_NLEVELS = 64

HOGDescriptor_L2Hys = 0

HOGDESCRIPTOR_L2HYS = 0

HOUGH_GRADIENT = 3

HOUGH_MULTI_SCALE = 2

HOUGH_PROBABILISTIC = 1
HOUGH_STANDARD = 0

IMREAD_ANYCOLOR = 4
IMREAD_ANYDEPTH = 2
IMREAD_COLOR = 1
IMREAD_GRAYSCALE = 0

IMREAD_IGNORE_ORIENTATION = 128

IMREAD_LOAD_GDAL = 8

IMREAD_REDUCED_COLOR_2 = 17
IMREAD_REDUCED_COLOR_4 = 33
IMREAD_REDUCED_COLOR_8 = 65

IMREAD_REDUCED_GRAYSCALE_2 = 16
IMREAD_REDUCED_GRAYSCALE_4 = 32
IMREAD_REDUCED_GRAYSCALE_8 = 64

IMREAD_UNCHANGED = -1

IMWRITE_JPEG_CHROMA_QUALITY = 6

IMWRITE_JPEG_LUMA_QUALITY = 5

IMWRITE_JPEG_OPTIMIZE = 3
IMWRITE_JPEG_PROGRESSIVE = 2
IMWRITE_JPEG_QUALITY = 1

IMWRITE_JPEG_RST_INTERVAL = 4

IMWRITE_PAM_FORMAT_BLACKANDWHITE = 1
IMWRITE_PAM_FORMAT_GRAYSCALE = 2

IMWRITE_PAM_FORMAT_GRAYSCALE_ALPHA = 3

IMWRITE_PAM_FORMAT_NULL = 0
IMWRITE_PAM_FORMAT_RGB = 4

IMWRITE_PAM_FORMAT_RGB_ALPHA = 5

IMWRITE_PAM_TUPLETYPE = 128

IMWRITE_PNG_BILEVEL = 18
IMWRITE_PNG_COMPRESSION = 16
IMWRITE_PNG_STRATEGY = 17

IMWRITE_PNG_STRATEGY_DEFAULT = 0
IMWRITE_PNG_STRATEGY_FILTERED = 1
IMWRITE_PNG_STRATEGY_FIXED = 4

IMWRITE_PNG_STRATEGY_HUFFMAN_ONLY = 2

IMWRITE_PNG_STRATEGY_RLE = 3

IMWRITE_PXM_BINARY = 32

IMWRITE_WEBP_QUALITY = 64

INPAINT_NS = 0
INPAINT_TELEA = 1

INTERSECT_FULL = 2
INTERSECT_NONE = 0
INTERSECT_PARTIAL = 1

INTER_AREA = 3
INTER_BITS = 5
INTER_BITS2 = 10
INTER_CUBIC = 2
INTER_LANCZOS4 = 4
INTER_LINEAR = 1
INTER_MAX = 7
INTER_NEAREST = 0

INTER_TAB_SIZE = 32
INTER_TAB_SIZE2 = 1024

KAZE_DIFF_CHARBONNIER = 3

KAZE_DIFF_PM_G1 = 0
KAZE_DIFF_PM_G2 = 1

KAZE_DIFF_WEICKERT = 2

KMEANS_PP_CENTERS = 2

KMEANS_RANDOM_CENTERS = 0

KMEANS_USE_INITIAL_LABELS = 1

LDR_SIZE = 256

LINE_4 = 4
LINE_8 = 8
LINE_AA = 16

LMEDS = 4

LSD_REFINE_ADV = 2
LSD_REFINE_NONE = 0
LSD_REFINE_STD = 1

MARKER_CROSS = 0
MARKER_DIAMOND = 3
MARKER_SQUARE = 4
MARKER_STAR = 2

MARKER_TILTED_CROSS = 1

MARKER_TRIANGLE_DOWN = 6
MARKER_TRIANGLE_UP = 5

Mat_AUTO_STEP = 0

MAT_AUTO_STEP = 0

Mat_CONTINUOUS_FLAG = 16384

MAT_CONTINUOUS_FLAG = 16384

Mat_DEPTH_MASK = 7

MAT_DEPTH_MASK = 7

Mat_MAGIC_MASK = -65536

MAT_MAGIC_MASK = -65536

Mat_MAGIC_VAL = 1124007936

MAT_MAGIC_VAL = 1124007936

Mat_SUBMATRIX_FLAG = 32768

MAT_SUBMATRIX_FLAG = 32768

Mat_TYPE_MASK = 4095

MAT_TYPE_MASK = 4095

MIXED_CLONE = 2

MONOCHROME_TRANSFER = 3

MORPH_BLACKHAT = 6
MORPH_CLOSE = 3
MORPH_CROSS = 1
MORPH_DILATE = 1
MORPH_ELLIPSE = 2
MORPH_ERODE = 0
MORPH_GRADIENT = 4
MORPH_HITMISS = 7
MORPH_OPEN = 2
MORPH_RECT = 0
MORPH_TOPHAT = 5

MOTION_AFFINE = 2
MOTION_EUCLIDEAN = 1
MOTION_HOMOGRAPHY = 3
MOTION_TRANSLATION = 0

NORMAL_CLONE = 1

NORMCONV_FILTER = 2

NORM_HAMMING = 6
NORM_HAMMING2 = 7
NORM_INF = 1
NORM_L1 = 2
NORM_L2 = 4
NORM_L2SQR = 5
NORM_MINMAX = 32
NORM_RELATIVE = 8

NORM_TYPE_MASK = 7

OPTFLOW_FARNEBACK_GAUSSIAN = 256

OPTFLOW_LK_GET_MIN_EIGENVALS = 8

OPTFLOW_USE_INITIAL_FLOW = 4

ORB_FAST_SCORE = 1

ORB_HARRIS_SCORE = 0

ORB_kBytes = 32

ORB_K_BYTES = 32

Param_ALGORITHM = 6

PARAM_ALGORITHM = 6

Param_BOOLEAN = 1

PARAM_BOOLEAN = 1

Param_FLOAT = 7

PARAM_FLOAT = 7

Param_INT = 0

PARAM_INT = 0

Param_MAT = 4

PARAM_MAT = 4

Param_MAT_VECTOR = 5

PARAM_MAT_VECTOR = 5

Param_REAL = 2

PARAM_REAL = 2

Param_STRING = 3

PARAM_STRING = 3

Param_UCHAR = 11

PARAM_UCHAR = 11

Param_UINT64 = 9

PARAM_UINT64 = 9

Param_UNSIGNED_INT = 8

PARAM_UNSIGNED_INT = 8

PCA_DATA_AS_COL = 1
PCA_DATA_AS_ROW = 0

PCA_USE_AVG = 2

PROJ_SPHERICAL_EQRECT = 1
PROJ_SPHERICAL_ORTHO = 0

QT_CHECKBOX = 1

QT_FONT_BLACK = 87
QT_FONT_BOLD = 75
QT_FONT_DEMIBOLD = 63
QT_FONT_LIGHT = 25
QT_FONT_NORMAL = 50

QT_NEW_BUTTONBAR = 1024

QT_PUSH_BUTTON = 0

QT_RADIOBOX = 2

QT_STYLE_ITALIC = 1
QT_STYLE_NORMAL = 0
QT_STYLE_OBLIQUE = 2

RANSAC = 8

RECURS_FILTER = 1

REDUCE_AVG = 1
REDUCE_MAX = 2
REDUCE_MIN = 3
REDUCE_SUM = 0

RETR_CCOMP = 2
RETR_EXTERNAL = 0
RETR_FLOODFILL = 4
RETR_LIST = 1
RETR_TREE = 3

RHO = 16

RNG_NORMAL = 1
RNG_UNIFORM = 0

ROTATE_180 = 1

ROTATE_90_CLOCKWISE = 0
ROTATE_90_COUNTERCLOCKWISE = 2

SOLVELP_MULTI = 1
SOLVELP_SINGLE = 0
SOLVELP_UNBOUNDED = -2
SOLVELP_UNFEASIBLE = -1

SOLVEPNP_AP3P = 5
SOLVEPNP_DLS = 3
SOLVEPNP_EPNP = 1
SOLVEPNP_ITERATIVE = 0

SOLVEPNP_MAX_COUNT = 6

SOLVEPNP_P3P = 2
SOLVEPNP_UPNP = 4

SORT_ASCENDING = 0
SORT_DESCENDING = 16

SORT_EVERY_COLUMN = 1
SORT_EVERY_ROW = 0

SparseMat_HASH_BIT = -2147483648
SparseMat_HASH_SCALE = 1540483477

SparseMat_MAGIC_VAL = 1123876864

SparseMat_MAX_DIM = 32

SPARSE_MAT_HASH_BIT = -2147483648
SPARSE_MAT_HASH_SCALE = 1540483477

SPARSE_MAT_MAGIC_VAL = 1123876864

SPARSE_MAT_MAX_DIM = 32

StereoBM_PREFILTER_NORMALIZED_RESPONSE = 0

StereoBM_PREFILTER_XSOBEL = 1

StereoMatcher_DISP_SCALE = 16
StereoMatcher_DISP_SHIFT = 4

StereoSGBM_MODE_HH = 1
StereoSGBM_MODE_HH4 = 3
StereoSGBM_MODE_SGBM = 0

StereoSGBM_MODE_SGBM_3WAY = 2

STEREO_BM_PREFILTER_NORMALIZED_RESPONSE = 0

STEREO_BM_PREFILTER_XSOBEL = 1

STEREO_MATCHER_DISP_SCALE = 16
STEREO_MATCHER_DISP_SHIFT = 4

STEREO_SGBM_MODE_HH = 1
STEREO_SGBM_MODE_HH4 = 3
STEREO_SGBM_MODE_SGBM = 0

STEREO_SGBM_MODE_SGBM_3WAY = 2

Stitcher_ERR_CAMERA_PARAMS_ADJUST_FAIL = 3

STITCHER_ERR_CAMERA_PARAMS_ADJUST_FAIL = 3

Stitcher_ERR_HOMOGRAPHY_EST_FAIL = 2

STITCHER_ERR_HOMOGRAPHY_EST_FAIL = 2

Stitcher_ERR_NEED_MORE_IMGS = 1

STITCHER_ERR_NEED_MORE_IMGS = 1

Stitcher_OK = 0

STITCHER_OK = 0

Stitcher_ORIG_RESOL = -1

STITCHER_ORIG_RESOL = -1

Stitcher_PANORAMA = 0

STITCHER_PANORAMA = 0

Stitcher_SCANS = 1

STITCHER_SCANS = 1

Subdiv2D_NEXT_AROUND_DST = 34

SUBDIV2D_NEXT_AROUND_DST = 34

Subdiv2D_NEXT_AROUND_LEFT = 19

SUBDIV2D_NEXT_AROUND_LEFT = 19

Subdiv2D_NEXT_AROUND_ORG = 0

SUBDIV2D_NEXT_AROUND_ORG = 0

Subdiv2D_NEXT_AROUND_RIGHT = 49

SUBDIV2D_NEXT_AROUND_RIGHT = 49

Subdiv2D_PREV_AROUND_DST = 51

SUBDIV2D_PREV_AROUND_DST = 51

Subdiv2D_PREV_AROUND_LEFT = 32

SUBDIV2D_PREV_AROUND_LEFT = 32

Subdiv2D_PREV_AROUND_ORG = 17

SUBDIV2D_PREV_AROUND_ORG = 17

Subdiv2D_PREV_AROUND_RIGHT = 2

SUBDIV2D_PREV_AROUND_RIGHT = 2

Subdiv2D_PTLOC_ERROR = -2

SUBDIV2D_PTLOC_ERROR = -2

Subdiv2D_PTLOC_INSIDE = 0

SUBDIV2D_PTLOC_INSIDE = 0

Subdiv2D_PTLOC_ON_EDGE = 2

SUBDIV2D_PTLOC_ON_EDGE = 2

Subdiv2D_PTLOC_OUTSIDE_RECT = -1

SUBDIV2D_PTLOC_OUTSIDE_RECT = -1

Subdiv2D_PTLOC_VERTEX = 1

SUBDIV2D_PTLOC_VERTEX = 1

SVD_FULL_UV = 4

SVD_MODIFY_A = 1

SVD_NO_UV = 2

TermCriteria_COUNT = 1
TermCriteria_EPS = 2

TermCriteria_MAX_ITER = 1

TERM_CRITERIA_COUNT = 1
TERM_CRITERIA_EPS = 2

TERM_CRITERIA_MAX_ITER = 1

THRESH_BINARY = 0

THRESH_BINARY_INV = 1

THRESH_MASK = 7
THRESH_OTSU = 8
THRESH_TOZERO = 3

THRESH_TOZERO_INV = 4

THRESH_TRIANGLE = 16
THRESH_TRUNC = 2

TM_CCOEFF = 4

TM_CCOEFF_NORMED = 5

TM_CCORR = 2

TM_CCORR_NORMED = 3

TM_SQDIFF = 0

TM_SQDIFF_NORMED = 1

UMatData_ASYNC_CLEANUP = 128

UMatData_COPY_ON_MAP = 1

UMatData_DEVICE_COPY_OBSOLETE = 4

UMatData_DEVICE_MEM_MAPPED = 64

UMatData_HOST_COPY_OBSOLETE = 2

UMatData_TEMP_COPIED_UMAT = 24

UMatData_TEMP_UMAT = 8

UMatData_USER_ALLOCATED = 32

UMat_AUTO_STEP = 0

UMAT_AUTO_STEP = 0

UMat_CONTINUOUS_FLAG = 16384

UMAT_CONTINUOUS_FLAG = 16384

UMAT_DATA_ASYNC_CLEANUP = 128

UMAT_DATA_COPY_ON_MAP = 1

UMAT_DATA_DEVICE_COPY_OBSOLETE = 4

UMAT_DATA_DEVICE_MEM_MAPPED = 64

UMAT_DATA_HOST_COPY_OBSOLETE = 2

UMAT_DATA_TEMP_COPIED_UMAT = 24

UMAT_DATA_TEMP_UMAT = 8

UMAT_DATA_USER_ALLOCATED = 32

UMat_DEPTH_MASK = 7

UMAT_DEPTH_MASK = 7

UMat_MAGIC_MASK = -65536

UMAT_MAGIC_MASK = -65536

UMat_MAGIC_VAL = 1124007936

UMAT_MAGIC_VAL = 1124007936

UMat_SUBMATRIX_FLAG = 32768

UMAT_SUBMATRIX_FLAG = 32768

UMat_TYPE_MASK = 4095

UMAT_TYPE_MASK = 4095

USAGE_ALLOCATE_DEVICE_MEMORY = 2

USAGE_ALLOCATE_HOST_MEMORY = 1

USAGE_ALLOCATE_SHARED_MEMORY = 4

USAGE_DEFAULT = 0

VIDEOWRITER_PROP_FRAMEBYTES = 2
VIDEOWRITER_PROP_NSTRIPES = 3
VIDEOWRITER_PROP_QUALITY = 1

WARP_FILL_OUTLIERS = 8

WARP_INVERSE_MAP = 16

WINDOW_AUTOSIZE = 1
WINDOW_FREERATIO = 256
WINDOW_FULLSCREEN = 1

WINDOW_GUI_EXPANDED = 0
WINDOW_GUI_NORMAL = 16

WINDOW_KEEPRATIO = 0
WINDOW_NORMAL = 0
WINDOW_OPENGL = 4096

WND_PROP_ASPECT_RATIO = 2

WND_PROP_AUTOSIZE = 1
WND_PROP_FULLSCREEN = 0
WND_PROP_OPENGL = 3
WND_PROP_VISIBLE = 4

_InputArray_CUDA_GPU_MAT = 589824

_InputArray_CUDA_HOST_MEM = 524288

_InputArray_EXPR = 393216

_InputArray_FIXED_SIZE = 1073741824
_InputArray_FIXED_TYPE = -2147483648

_InputArray_KIND_MASK = 2031616
_InputArray_KIND_SHIFT = 16

_InputArray_MAT = 65536
_InputArray_MATX = 131072
_InputArray_NONE = 0

_InputArray_OPENGL_BUFFER = 458752

_InputArray_STD_ARRAY = 917504

_InputArray_STD_ARRAY_MAT = 983040

_InputArray_STD_BOOL_VECTOR = 786432

_InputArray_STD_VECTOR = 196608

_InputArray_STD_VECTOR_CUDA_GPU_MAT = 851968

_InputArray_STD_VECTOR_MAT = 327680
_InputArray_STD_VECTOR_UMAT = 720896
_InputArray_STD_VECTOR_VECTOR = 262144

_InputArray_UMAT = 655360

_INPUT_ARRAY_CUDA_GPU_MAT = 589824

_INPUT_ARRAY_CUDA_HOST_MEM = 524288

_INPUT_ARRAY_EXPR = 393216

_INPUT_ARRAY_FIXED_SIZE = 1073741824
_INPUT_ARRAY_FIXED_TYPE = -2147483648

_INPUT_ARRAY_KIND_MASK = 2031616
_INPUT_ARRAY_KIND_SHIFT = 16

_INPUT_ARRAY_MAT = 65536
_INPUT_ARRAY_MATX = 131072
_INPUT_ARRAY_NONE = 0

_INPUT_ARRAY_OPENGL_BUFFER = 458752

_INPUT_ARRAY_STD_ARRAY = 917504

_INPUT_ARRAY_STD_ARRAY_MAT = 983040

_INPUT_ARRAY_STD_BOOL_VECTOR = 786432

_INPUT_ARRAY_STD_VECTOR = 196608

_INPUT_ARRAY_STD_VECTOR_CUDA_GPU_MAT = 851968

_INPUT_ARRAY_STD_VECTOR_MAT = 327680
_INPUT_ARRAY_STD_VECTOR_UMAT = 720896
_INPUT_ARRAY_STD_VECTOR_VECTOR = 262144

_INPUT_ARRAY_UMAT = 655360

_OutputArray_DEPTH_MASK_16S = 8
_OutputArray_DEPTH_MASK_16U = 4
_OutputArray_DEPTH_MASK_32F = 32
_OutputArray_DEPTH_MASK_32S = 16
_OutputArray_DEPTH_MASK_64F = 64
_OutputArray_DEPTH_MASK_8S = 2
_OutputArray_DEPTH_MASK_8U = 1
_OutputArray_DEPTH_MASK_ALL = 127

_OutputArray_DEPTH_MASK_ALL_BUT_8S = 125

_OutputArray_DEPTH_MASK_FLT = 96

_OUTPUT_ARRAY_DEPTH_MASK_16S = 8
_OUTPUT_ARRAY_DEPTH_MASK_16U = 4
_OUTPUT_ARRAY_DEPTH_MASK_32F = 32
_OUTPUT_ARRAY_DEPTH_MASK_32S = 16
_OUTPUT_ARRAY_DEPTH_MASK_64F = 64
_OUTPUT_ARRAY_DEPTH_MASK_8S = 2
_OUTPUT_ARRAY_DEPTH_MASK_8U = 1
_OUTPUT_ARRAY_DEPTH_MASK_ALL = 127

_OUTPUT_ARRAY_DEPTH_MASK_ALL_BUT_8S = 125

_OUTPUT_ARRAY_DEPTH_MASK_FLT = 96

__UMAT_USAGE_FLAGS_32BIT = 2147483647

__version__ = '3.3.0'

# functions

def absdiff(src1, src2, dst=None): # real signature unknown; restored from __doc__
    """
    absdiff(src1, src2[, dst]) -> dst
    .   @brief Calculates the per-element absolute difference between two arrays or between an array and a scalar.
    .   
    .   The function cv::absdiff calculates:
    .   *   Absolute difference between two arrays when they have the same
    .   size and type:
    .   \f[\texttt{dst}(I) =  \texttt{saturate} (| \texttt{src1}(I) -  \texttt{src2}(I)|)\f]
    .   *   Absolute difference between an array and a scalar when the second
    .   array is constructed from Scalar or has as many elements as the
    .   number of channels in `src1`:
    .   \f[\texttt{dst}(I) =  \texttt{saturate} (| \texttt{src1}(I) -  \texttt{src2} |)\f]
    .   *   Absolute difference between a scalar and an array when the first
    .   array is constructed from Scalar or has as many elements as the
    .   number of channels in `src2`:
    .   \f[\texttt{dst}(I) =  \texttt{saturate} (| \texttt{src1} -  \texttt{src2}(I) |)\f]
    .   where I is a multi-dimensional index of array elements. In case of
    .   multi-channel arrays, each channel is processed independently.
    .   @note Saturation is not applied when the arrays have the depth CV_32S.
    .   You may even get a negative value in the case of overflow.
    .   @param src1 first input array or a scalar.
    .   @param src2 second input array or a scalar.
    .   @param dst output array that has the same size and type as input arrays.
    .   @sa cv::abs(const Mat&)
    """
    pass

def accumulate(src, dst, mask=None): # real signature unknown; restored from __doc__
    """
    accumulate(src, dst[, mask]) -> dst
    .   @brief Adds an image to the accumulator.
    .   
    .   The function adds src or some of its elements to dst :
    .   
    .   \f[\texttt{dst} (x,y)  \leftarrow \texttt{dst} (x,y) +  \texttt{src} (x,y)  \quad \text{if} \quad \texttt{mask} (x,y)  \ne 0\f]
    .   
    .   The function supports multi-channel images. Each channel is processed independently.
    .   
    .   The functions accumulate\* can be used, for example, to collect statistics of a scene background
    .   viewed by a still camera and for the further foreground-background segmentation.
    .   
    .   @param src Input image of type CV_8UC(n), CV_16UC(n), CV_32FC(n) or CV_64FC(n), where n is a positive integer.
    .   @param dst %Accumulator image with the same number of channels as input image, and a depth of CV_32F or CV_64F.
    .   @param mask Optional operation mask.
    .   
    .   @sa  accumulateSquare, accumulateProduct, accumulateWeighted
    """
    pass

def accumulateProduct(src1, src2, dst, mask=None): # real signature unknown; restored from __doc__
    """
    accumulateProduct(src1, src2, dst[, mask]) -> dst
    .   @brief Adds the per-element product of two input images to the accumulator.
    .   
    .   The function adds the product of two images or their selected regions to the accumulator dst :
    .   
    .   \f[\texttt{dst} (x,y)  \leftarrow \texttt{dst} (x,y) +  \texttt{src1} (x,y)  \cdot \texttt{src2} (x,y)  \quad \text{if} \quad \texttt{mask} (x,y)  \ne 0\f]
    .   
    .   The function supports multi-channel images. Each channel is processed independently.
    .   
    .   @param src1 First input image, 1- or 3-channel, 8-bit or 32-bit floating point.
    .   @param src2 Second input image of the same type and the same size as src1 .
    .   @param dst %Accumulator with the same number of channels as input images, 32-bit or 64-bit
    .   floating-point.
    .   @param mask Optional operation mask.
    .   
    .   @sa  accumulate, accumulateSquare, accumulateWeighted
    """
    pass

def accumulateSquare(src, dst, mask=None): # real signature unknown; restored from __doc__
    """
    accumulateSquare(src, dst[, mask]) -> dst
    .   @brief Adds the square of a source image to the accumulator.
    .   
    .   The function adds the input image src or its selected region, raised to a power of 2, to the
    .   accumulator dst :
    .   
    .   \f[\texttt{dst} (x,y)  \leftarrow \texttt{dst} (x,y) +  \texttt{src} (x,y)^2  \quad \text{if} \quad \texttt{mask} (x,y)  \ne 0\f]
    .   
    .   The function supports multi-channel images. Each channel is processed independently.
    .   
    .   @param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point.
    .   @param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit
    .   floating-point.
    .   @param mask Optional operation mask.
    .   
    .   @sa  accumulateSquare, accumulateProduct, accumulateWeighted
    """
    pass

def accumulateWeighted(src, dst, alpha, mask=None): # real signature unknown; restored from __doc__
    """
    accumulateWeighted(src, dst, alpha[, mask]) -> dst
    .   @brief Updates a running average.
    .   
    .   The function calculates the weighted sum of the input image src and the accumulator dst so that dst
    .   becomes a running average of a frame sequence:
    .   
    .   \f[\texttt{dst} (x,y)  \leftarrow (1- \texttt{alpha} )  \cdot \texttt{dst} (x,y) +  \texttt{alpha} \cdot \texttt{src} (x,y)  \quad \text{if} \quad \texttt{mask} (x,y)  \ne 0\f]
    .   
    .   That is, alpha regulates the update speed (how fast the accumulator "forgets" about earlier images).
    .   The function supports multi-channel images. Each channel is processed independently.
    .   
    .   @param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point.
    .   @param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit
    .   floating-point.
    .   @param alpha Weight of the input image.
    .   @param mask Optional operation mask.
    .   
    .   @sa  accumulate, accumulateSquare, accumulateProduct
    """
    pass

def adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C, dst=None): # real signature unknown; restored from __doc__
    """
    adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C[, dst]) -> dst
    .   @brief Applies an adaptive threshold to an array.
    .   
    .   The function transforms a grayscale image to a binary image according to the formulae:
    .   -   **THRESH_BINARY**
    .   \f[dst(x,y) =  \fork{\texttt{maxValue}}{if \(src(x,y) > T(x,y)\)}{0}{otherwise}\f]
    .   -   **THRESH_BINARY_INV**
    .   \f[dst(x,y) =  \fork{0}{if \(src(x,y) > T(x,y)\)}{\texttt{maxValue}}{otherwise}\f]
    .   where \f$T(x,y)\f$ is a threshold calculated individually for each pixel (see adaptiveMethod parameter).
    .   
    .   The function can process the image in-place.
    .   
    .   @param src Source 8-bit single-channel image.
    .   @param dst Destination image of the same size and the same type as src.
    .   @param maxValue Non-zero value assigned to the pixels for which the condition is satisfied
    .   @param adaptiveMethod Adaptive thresholding algorithm to use, see cv::AdaptiveThresholdTypes
    .   @param thresholdType Thresholding type that must be either THRESH_BINARY or THRESH_BINARY_INV,
    .   see cv::ThresholdTypes.
    .   @param blockSize Size of a pixel neighborhood that is used to calculate a threshold value for the
    .   pixel: 3, 5, 7, and so on.
    .   @param C Constant subtracted from the mean or weighted mean (see the details below). Normally, it
    .   is positive but may be zero or negative as well.
    .   
    .   @sa  threshold, blur, GaussianBlur
    """
    pass

def add(src1, src2, dst=None, mask=None, dtype=None): # real signature unknown; restored from __doc__
    """
    add(src1, src2[, dst[, mask[, dtype]]]) -> dst
    .   @brief Calculates the per-element sum of two arrays or an array and a scalar.
    .   
    .   The function add calculates:
    .   - Sum of two arrays when both input arrays have the same size and the same number of channels:
    .   \f[\texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1}(I) +  \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\f]
    .   - Sum of an array and a scalar when src2 is constructed from Scalar or has the same number of
    .   elements as `src1.channels()`:
    .   \f[\texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1}(I) +  \texttt{src2} ) \quad \texttt{if mask}(I) \ne0\f]
    .   - Sum of a scalar and an array when src1 is constructed from Scalar or has the same number of
    .   elements as `src2.channels()`:
    .   \f[\texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1} +  \texttt{src2}(I) ) \quad \texttt{if mask}(I) \ne0\f]
    .   where `I` is a multi-dimensional index of array elements. In case of multi-channel arrays, each
    .   channel is processed independently.
    .   
    .   The first function in the list above can be replaced with matrix expressions:
    .   @code{.cpp}
    .   dst = src1 + src2;
    .   dst += src1; // equivalent to add(dst, src1, dst);
    .   @endcode
    .   The input arrays and the output array can all have the same or different depths. For example, you
    .   can add a 16-bit unsigned array to a 8-bit signed array and store the sum as a 32-bit
    .   floating-point array. Depth of the output array is determined by the dtype parameter. In the second
    .   and third cases above, as well as in the first case, when src1.depth() == src2.depth(), dtype can
    .   be set to the default -1. In this case, the output array will have the same depth as the input
    .   array, be it src1, src2 or both.
    .   @note Saturation is not applied when the output array has the depth CV_32S. You may even get
    .   result of an incorrect sign in the case of overflow.
    .   @param src1 first input array or a scalar.
    .   @param src2 second input array or a scalar.
    .   @param dst output array that has the same size and number of channels as the input array(s); the
    .   depth is defined by dtype or src1/src2.
    .   @param mask optional operation mask - 8-bit single channel array, that specifies elements of the
    .   output array to be changed.
    .   @param dtype optional depth of the output array (see the discussion below).
    .   @sa subtract, addWeighted, scaleAdd, Mat::convertTo
    """
    pass

def addText(img, text, org, nameFont, pointSize=None, color=None, weight=None, style=None, spacing=None): # real signature unknown; restored from __doc__
    """
    addText(img, text, org, nameFont[, pointSize[, color[, weight[, style[, spacing]]]]]) -> None
    .   @brief Draws a text on the image.
    .   
    .   @param img 8-bit 3-channel image where the text should be drawn.
    .   @param text Text to write on an image.
    .   @param org Point(x,y) where the text should start on an image.
    .   @param nameFont Name of the font. The name should match the name of a system font (such as
    .   *Times*). If the font is not found, a default one is used.
    .   @param pointSize Size of the font. If not specified, equal zero or negative, the point size of the
    .   font is set to a system-dependent default value. Generally, this is 12 points.
    .   @param color Color of the font in BGRA where A = 255 is fully transparent.
    .   @param weight Font weight. Available operation flags are : cv::QtFontWeights You can also specify a positive integer for better control.
    .   @param style Font style. Available operation flags are : cv::QtFontStyles
    .   @param spacing Spacing between characters. It can be negative or positive.
    """
    pass

def addWeighted(src1, alpha, src2, beta, gamma, dst=None, dtype=None): # real signature unknown; restored from __doc__
    """
    addWeighted(src1, alpha, src2, beta, gamma[, dst[, dtype]]) -> dst
    .   @brief Calculates the weighted sum of two arrays.
    .   
    .   The function addWeighted calculates the weighted sum of two arrays as follows:
    .   \f[\texttt{dst} (I)= \texttt{saturate} ( \texttt{src1} (I)* \texttt{alpha} +  \texttt{src2} (I)* \texttt{beta} +  \texttt{gamma} )\f]
    .   where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each
    .   channel is processed independently.
    .   The function can be replaced with a matrix expression:
    .   @code{.cpp}
    .   dst = src1*alpha + src2*beta + gamma;
    .   @endcode
    .   @note Saturation is not applied when the output array has the depth CV_32S. You may even get
    .   result of an incorrect sign in the case of overflow.
    .   @param src1 first input array.
    .   @param alpha weight of the first array elements.
    .   @param src2 second input array of the same size and channel number as src1.
    .   @param beta weight of the second array elements.
    .   @param gamma scalar added to each sum.
    .   @param dst output array that has the same size and number of channels as the input arrays.
    .   @param dtype optional depth of the output array; when both input arrays have the same depth, dtype
    .   can be set to -1, which will be equivalent to src1.depth().
    .   @sa  add, subtract, scaleAdd, Mat::convertTo
    """
    pass

def AgastFeatureDetector_create(threshold=None, nonmaxSuppression=None, type=None): # real signature unknown; restored from __doc__
    """
    AgastFeatureDetector_create([, threshold[, nonmaxSuppression[, type]]]) -> retval
    .
    """
    pass

def AKAZE_create(descriptor_type=None, descriptor_size=None, descriptor_channels=None, threshold=None, nOctaves=None, nOctaveLayers=None, diffusivity=None): # real signature unknown; restored from __doc__
    """
    AKAZE_create([, descriptor_type[, descriptor_size[, descriptor_channels[, threshold[, nOctaves[, nOctaveLayers[, diffusivity]]]]]]]) -> retval
    .   @brief The AKAZE constructor
    .   
    .   @param descriptor_type Type of the extracted descriptor: DESCRIPTOR_KAZE,
    .   DESCRIPTOR_KAZE_UPRIGHT, DESCRIPTOR_MLDB or DESCRIPTOR_MLDB_UPRIGHT.
    .   @param descriptor_size Size of the descriptor in bits. 0 -\> Full size
    .   @param descriptor_channels Number of channels in the descriptor (1, 2, 3)
    .   @param threshold Detector response threshold to accept point
    .   @param nOctaves Maximum octave evolution of the image
    .   @param nOctaveLayers Default number of sublevels per scale level
    .   @param diffusivity Diffusivity type. DIFF_PM_G1, DIFF_PM_G2, DIFF_WEICKERT or
    .   DIFF_CHARBONNIER
    """
    pass

def applyColorMap(src, colormap, dst=None): # real signature unknown; restored from __doc__
    """
    applyColorMap(src, colormap[, dst]) -> dst
    .   @brief Applies a GNU Octave/MATLAB equivalent colormap on a given image.
    .   
    .   @param src The source image, grayscale or colored of type CV_8UC1 or CV_8UC3.
    .   @param dst The result is the colormapped source image. Note: Mat::create is called on dst.
    .   @param colormap The colormap to apply, see cv::ColormapTypes
    
    
    
    applyColorMap(src, userColor[, dst]) -> dst
    .   @brief Applies a user colormap on a given image.
    .   
    .   @param src The source image, grayscale or colored of type CV_8UC1 or CV_8UC3.
    .   @param dst The result is the colormapped source image. Note: Mat::create is called on dst.
    .   @param userColor The colormap to apply of type CV_8UC1 or CV_8UC3 and size 256
    """
    pass

def approxPolyDP(curve, epsilon, closed, approxCurve=None): # real signature unknown; restored from __doc__
    """
    approxPolyDP(curve, epsilon, closed[, approxCurve]) -> approxCurve
    .   @brief Approximates a polygonal curve(s) with the specified precision.
    .   
    .   The function cv::approxPolyDP approximates a curve or a polygon with another curve/polygon with less
    .   vertices so that the distance between them is less or equal to the specified precision. It uses the
    .   Douglas-Peucker algorithm <http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm>
    .   
    .   @param curve Input vector of a 2D point stored in std::vector or Mat
    .   @param approxCurve Result of the approximation. The type should match the type of the input curve.
    .   @param epsilon Parameter specifying the approximation accuracy. This is the maximum distance
    .   between the original curve and its approximation.
    .   @param closed If true, the approximated curve is closed (its first and last vertices are
    .   connected). Otherwise, it is not closed.
    """
    pass

def arcLength(curve, closed): # real signature unknown; restored from __doc__
    """
    arcLength(curve, closed) -> retval
    .   @brief Calculates a contour perimeter or a curve length.
    .   
    .   The function computes a curve length or a closed contour perimeter.
    .   
    .   @param curve Input vector of 2D points, stored in std::vector or Mat.
    .   @param closed Flag indicating whether the curve is closed or not.
    """
    pass

def arrowedLine(img, pt1, pt2, color, thickness=None, line_type=None, shift=None, tipLength=None): # real signature unknown; restored from __doc__
    """
    arrowedLine(img, pt1, pt2, color[, thickness[, line_type[, shift[, tipLength]]]]) -> img
    .   @brief Draws a arrow segment pointing from the first point to the second one.
    .   
    .   The function arrowedLine draws an arrow between pt1 and pt2 points in the image. See also cv::line.
    .   
    .   @param img Image.
    .   @param pt1 The point the arrow starts from.
    .   @param pt2 The point the arrow points to.
    .   @param color Line color.
    .   @param thickness Line thickness.
    .   @param line_type Type of the line, see cv::LineTypes
    .   @param shift Number of fractional bits in the point coordinates.
    .   @param tipLength The length of the arrow tip in relation to the arrow length
    """
    pass

def batchDistance(src1, src2, dtype, dist=None, nidx=None, normType=None, K=None, mask=None, update=None, crosscheck=None): # real signature unknown; restored from __doc__
    """
    batchDistance(src1, src2, dtype[, dist[, nidx[, normType[, K[, mask[, update[, crosscheck]]]]]]]) -> dist, nidx
    .   @brief naive nearest neighbor finder
    .   
    .   see http://en.wikipedia.org/wiki/Nearest_neighbor_search
    .   @todo document
    """
    pass

def BFMatcher(normType=None, crossCheck=None): # real signature unknown; restored from __doc__
    """
    BFMatcher([, normType[, crossCheck]]) -> <BFMatcher object>
    .   @brief Brute-force matcher constructor (obsolete). Please use BFMatcher.create()
    .   *
    .   *
    """
    pass

def BFMatcher_create(normType=None, crossCheck=None): # real signature unknown; restored from __doc__
    """
    BFMatcher_create([, normType[, crossCheck]]) -> retval
    .
    """
    pass

def bilateralFilter(src, d, sigmaColor, sigmaSpace, dst=None, borderType=None): # real signature unknown; restored from __doc__
    """
    bilateralFilter(src, d, sigmaColor, sigmaSpace[, dst[, borderType]]) -> dst
    .   @brief Applies the bilateral filter to an image.
    .   
    .   The function applies bilateral filtering to the input image, as described in
    .   http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html
    .   bilateralFilter can reduce unwanted noise very well while keeping edges fairly sharp. However, it is
    .   very slow compared to most filters.
    .   
    .   _Sigma values_: For simplicity, you can set the 2 sigma values to be the same. If they are small (\<
    .   10), the filter will not have much effect, whereas if they are large (\> 150), they will have a very
    .   strong effect, making the image look "cartoonish".
    .   
    .   _Filter size_: Large filters (d \> 5) are very slow, so it is recommended to use d=5 for real-time
    .   applications, and perhaps d=9 for offline applications that need heavy noise filtering.
    .   
    .   This filter does not work inplace.
    .   @param src Source 8-bit or floating-point, 1-channel or 3-channel image.
    .   @param dst Destination image of the same size and type as src .
    .   @param d Diameter of each pixel neighborhood that is used during filtering. If it is non-positive,
    .   it is computed from sigmaSpace.
    .   @param sigmaColor Filter sigma in the color space. A larger value of the parameter means that
    .   farther colors within the pixel neighborhood (see sigmaSpace) will be mixed together, resulting
    .   in larger areas of semi-equal color.
    .   @param sigmaSpace Filter sigma in the coordinate space. A larger value of the parameter means that
    .   farther pixels will influence each other as long as their colors are close enough (see sigmaColor
    .   ). When d\>0, it specifies the neighborhood size regardless of sigmaSpace. Otherwise, d is
    .   proportional to sigmaSpace.
    .   @param borderType border mode used to extrapolate pixels outside of the image, see cv::BorderTypes
    """
    pass

def bitwise_and(src1, src2, dst=None, mask=None): # real signature unknown; restored from __doc__
    """
    bitwise_and(src1, src2[, dst[, mask]]) -> dst
    .   @brief computes bitwise conjunction of the two arrays (dst = src1 & src2)
    .   Calculates the per-element bit-wise conjunction of two arrays or an
    .   array and a scalar.
    .   
    .   The function cv::bitwise_and calculates the per-element bit-wise logical conjunction for:
    .   *   Two arrays when src1 and src2 have the same size:
    .   \f[\texttt{dst} (I) =  \texttt{src1} (I)  \wedge \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
    .   *   An array and a scalar when src2 is constructed from Scalar or has
    .   the same number of elements as `src1.channels()`:
    .   \f[\texttt{dst} (I) =  \texttt{src1} (I)  \wedge \texttt{src2} \quad \texttt{if mask} (I) \ne0\f]
    .   *   A scalar and an array when src1 is constructed from Scalar or has
    .   the same number of elements as `src2.channels()`:
    .   \f[\texttt{dst} (I) =  \texttt{src1}  \wedge \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
    .   In case of floating-point arrays, their machine-specific bit
    .   representations (usually IEEE754-compliant) are used for the operation.
    .   In case of multi-channel arrays, each channel is processed
    .   independently. In the second and third cases above, the scalar is first
    .   converted to the array type.
    .   @param src1 first input array or a scalar.
    .   @param src2 second input array or a scalar.
    .   @param dst output array that has the same size and type as the input
    .   arrays.
    .   @param mask optional operation mask, 8-bit single channel array, that
    .   specifies elements of the output array to be changed.
    """
    pass

def bitwise_not(src, dst=None, mask=None): # real signature unknown; restored from __doc__
    """
    bitwise_not(src[, dst[, mask]]) -> dst
    .   @brief  Inverts every bit of an array.
    .   
    .   The function cv::bitwise_not calculates per-element bit-wise inversion of the input
    .   array:
    .   \f[\texttt{dst} (I) =  \neg \texttt{src} (I)\f]
    .   In case of a floating-point input array, its machine-specific bit
    .   representation (usually IEEE754-compliant) is used for the operation. In
    .   case of multi-channel arrays, each channel is processed independently.
    .   @param src input array.
    .   @param dst output array that has the same size and type as the input
    .   array.
    .   @param mask optional operation mask, 8-bit single channel array, that
    .   specifies elements of the output array to be changed.
    """
    pass

def bitwise_or(src1, src2, dst=None, mask=None): # real signature unknown; restored from __doc__
    """
    bitwise_or(src1, src2[, dst[, mask]]) -> dst
    .   @brief Calculates the per-element bit-wise disjunction of two arrays or an
    .   array and a scalar.
    .   
    .   The function cv::bitwise_or calculates the per-element bit-wise logical disjunction for:
    .   *   Two arrays when src1 and src2 have the same size:
    .   \f[\texttt{dst} (I) =  \texttt{src1} (I)  \vee \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
    .   *   An array and a scalar when src2 is constructed from Scalar or has
    .   the same number of elements as `src1.channels()`:
    .   \f[\texttt{dst} (I) =  \texttt{src1} (I)  \vee \texttt{src2} \quad \texttt{if mask} (I) \ne0\f]
    .   *   A scalar and an array when src1 is constructed from Scalar or has
    .   the same number of elements as `src2.channels()`:
    .   \f[\texttt{dst} (I) =  \texttt{src1}  \vee \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
    .   In case of floating-point arrays, their machine-specific bit
    .   representations (usually IEEE754-compliant) are used for the operation.
    .   In case of multi-channel arrays, each channel is processed
    .   independently. In the second and third cases above, the scalar is first
    .   converted to the array type.
    .   @param src1 first input array or a scalar.
    .   @param src2 second input array or a scalar.
    .   @param dst output array that has the same size and type as the input
    .   arrays.
    .   @param mask optional operation mask, 8-bit single channel array, that
    .   specifies elements of the output array to be changed.
    """
    pass

def bitwise_xor(src1, src2, dst=None, mask=None): # real signature unknown; restored from __doc__
    """
    bitwise_xor(src1, src2[, dst[, mask]]) -> dst
    .   @brief Calculates the per-element bit-wise "exclusive or" operation on two
    .   arrays or an array and a scalar.
    .   
    .   The function cv::bitwise_xor calculates the per-element bit-wise logical "exclusive-or"
    .   operation for:
    .   *   Two arrays when src1 and src2 have the same size:
    .   \f[\texttt{dst} (I) =  \texttt{src1} (I)  \oplus \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
    .   *   An array and a scalar when src2 is constructed from Scalar or has
    .   the same number of elements as `src1.channels()`:
    .   \f[\texttt{dst} (I) =  \texttt{src1} (I)  \oplus \texttt{src2} \quad \texttt{if mask} (I) \ne0\f]
    .   *   A scalar and an array when src1 is constructed from Scalar or has
    .   the same number of elements as `src2.channels()`:
    .   \f[\texttt{dst} (I) =  \texttt{src1}  \oplus \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
    .   In case of floating-point arrays, their machine-specific bit
    .   representations (usually IEEE754-compliant) are used for the operation.
    .   In case of multi-channel arrays, each channel is processed
    .   independently. In the 2nd and 3rd cases above, the scalar is first
    .   converted to the array type.
    .   @param src1 first input array or a scalar.
    .   @param src2 second input array or a scalar.
    .   @param dst output array that has the same size and type as the input
    .   arrays.
    .   @param mask optional operation mask, 8-bit single channel array, that
    .   specifies elements of the output array to be changed.
    """
    pass

def blur(src, ksize, dst=None, anchor=None, borderType=None): # real signature unknown; restored from __doc__
    """
    blur(src, ksize[, dst[, anchor[, borderType]]]) -> dst
    .   @brief Blurs an image using the normalized box filter.
    .   
    .   The function smooths an image using the kernel:
    .   
    .   \f[\texttt{K} =  \frac{1}{\texttt{ksize.width*ksize.height}} \begin{bmatrix} 1 & 1 & 1 &  \cdots & 1 & 1  \\ 1 & 1 & 1 &  \cdots & 1 & 1  \\ \hdotsfor{6} \\ 1 & 1 & 1 &  \cdots & 1 & 1  \\ \end{bmatrix}\f]
    .   
    .   The call `blur(src, dst, ksize, anchor, borderType)` is equivalent to `boxFilter(src, dst, src.type(),
    .   anchor, true, borderType)`.
    .   
    .   @param src input image; it can have any number of channels, which are processed independently, but
    .   the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
    .   @param dst output image of the same size and type as src.
    .   @param ksize blurring kernel size.
    .   @param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel
    .   center.
    .   @param borderType border mode used to extrapolate pixels outside of the image, see cv::BorderTypes
    .   @sa  boxFilter, bilateralFilter, GaussianBlur, medianBlur
    """
    pass

def borderInterpolate(p, len, borderType): # real signature unknown; restored from __doc__
    """
    borderInterpolate(p, len, borderType) -> retval
    .   @brief Computes the source location of an extrapolated pixel.
    .   
    .   The function computes and returns the coordinate of a donor pixel corresponding to the specified
    .   extrapolated pixel when using the specified extrapolation border mode. For example, if you use
    .   cv::BORDER_WRAP mode in the horizontal direction, cv::BORDER_REFLECT_101 in the vertical direction and
    .   want to compute value of the "virtual" pixel Point(-5, 100) in a floating-point image img , it
    .   looks like:
    .   @code{.cpp}
    .   float val = img.at<float>(borderInterpolate(100, img.rows, cv::BORDER_REFLECT_101),
    .   borderInterpolate(-5, img.cols, cv::BORDER_WRAP));
    .   @endcode
    .   Normally, the function is not called directly. It is used inside filtering functions and also in
    .   copyMakeBorder.
    .   @param p 0-based coordinate of the extrapolated pixel along one of the axes, likely \<0 or \>= len
    .   @param len Length of the array along the corresponding axis.
    .   @param borderType Border type, one of the cv::BorderTypes, except for cv::BORDER_TRANSPARENT and
    .   cv::BORDER_ISOLATED . When borderType==cv::BORDER_CONSTANT , the function always returns -1, regardless
    .   of p and len.
    .   
    .   @sa copyMakeBorder
    """
    pass

def boundingRect(points): # real signature unknown; restored from __doc__
    """
    boundingRect(points) -> retval
    .   @brief Calculates the up-right bounding rectangle of a point set.
    .   
    .   The function calculates and returns the minimal up-right bounding rectangle for the specified point set.
    .   
    .   @param points Input 2D point set, stored in std::vector or Mat.
    """
    pass

def BOWImgDescriptorExtractor(dextractor, dmatcher): # real signature unknown; restored from __doc__
    """
    BOWImgDescriptorExtractor(dextractor, dmatcher) -> <BOWImgDescriptorExtractor object>
    .   @brief The constructor.
    .   
    .   @param dextractor Descriptor extractor that is used to compute descriptors for an input image and
    .   its keypoints.
    .   @param dmatcher Descriptor matcher that is used to find the nearest word of the trained vocabulary
    .   for each keypoint descriptor of the image.
    """
    pass

def BOWKMeansTrainer(clusterCount, termcrit=None, attempts=None, flags=None): # real signature unknown; restored from __doc__
    """
    BOWKMeansTrainer(clusterCount[, termcrit[, attempts[, flags]]]) -> <BOWKMeansTrainer object>
    .   @brief The constructor.
    .   
    .   @see cv::kmeans
    """
    pass

def boxFilter(src, ddepth, ksize, dst=None, anchor=None, normalize=None, borderType=None): # real signature unknown; restored from __doc__
    """
    boxFilter(src, ddepth, ksize[, dst[, anchor[, normalize[, borderType]]]]) -> dst
    .   @brief Blurs an image using the box filter.
    .   
    .   The function smooths an image using the kernel:
    .   
    .   \f[\texttt{K} =  \alpha \begin{bmatrix} 1 & 1 & 1 &  \cdots & 1 & 1  \\ 1 & 1 & 1 &  \cdots & 1 & 1  \\ \hdotsfor{6} \\ 1 & 1 & 1 &  \cdots & 1 & 1 \end{bmatrix}\f]
    .   
    .   where
    .   
    .   \f[\alpha = \fork{\frac{1}{\texttt{ksize.width*ksize.height}}}{when \texttt{normalize=true}}{1}{otherwise}\f]
    .   
    .   Unnormalized box filter is useful for computing various integral characteristics over each pixel
    .   neighborhood, such as covariance matrices of image derivatives (used in dense optical flow
    .   algorithms, and so on). If you need to compute pixel sums over variable-size windows, use cv::integral.
    .   
    .   @param src input image.
    .   @param dst output image of the same size and type as src.
    .   @param ddepth the output image depth (-1 to use src.depth()).
    .   @param ksize blurring kernel size.
    .   @param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel
    .   center.
    .   @param normalize flag, specifying whether the kernel is normalized by its area or not.
    .   @param borderType border mode used to extrapolate pixels outside of the image, see cv::BorderTypes
    .   @sa  blur, bilateralFilter, GaussianBlur, medianBlur, integral
    """
    pass

def boxPoints(box, points=None): # real signature unknown; restored from __doc__
    """
    boxPoints(box[, points]) -> points
    .   @brief Finds the four vertices of a rotated rect. Useful to draw the rotated rectangle.
    .   
    .   The function finds the four vertices of a rotated rectangle. This function is useful to draw the
    .   rectangle. In C++, instead of using this function, you can directly use box.points() method. Please
    .   visit the [tutorial on bounding
    .   rectangle](http://docs.opencv.org/doc/tutorials/imgproc/shapedescriptors/bounding_rects_circles/bounding_rects_circles.html#bounding-rects-circles)
    .   for more information.
    .   
    .   @param box The input rotated rectangle. It may be the output of
    .   @param points The output array of four vertices of rectangles.
    """
    pass

def BRISK_create(thresh=None, octaves=None, patternScale=None): # real signature unknown; restored from __doc__
    """
    BRISK_create([, thresh[, octaves[, patternScale]]]) -> retval
    .   @brief The BRISK constructor
    .   
    .   @param thresh AGAST detection threshold score.
    .   @param octaves detection octaves. Use 0 to do single scale.
    .   @param patternScale apply this scale to the pattern used for sampling the neighbourhood of a
    .   keypoint.
    
    
    
    BRISK_create(radiusList, numberList[, dMax[, dMin[, indexChange]]]) -> retval
    .   @brief The BRISK constructor for a custom pattern
    .   
    .   @param radiusList defines the radii (in pixels) where the samples around a keypoint are taken (for
    .   keypoint scale 1).
    .   @param numberList defines the number of sampling points on the sampling circle. Must be the same
    .   size as radiusList..
    .   @param dMax threshold for the short pairings used for descriptor formation (in pixels for keypoint
    .   scale 1).
    .   @param dMin threshold for the long pairings used for orientation determination (in pixels for
    .   keypoint scale 1).
    .   @param indexChange index remapping of the bits.
    """
    pass

def buildOpticalFlowPyramid(img, winSize, maxLevel, pyramid=None, withDerivatives=None, pyrBorder=None, derivBorder=None, tryReuseInputImage=None): # real signature unknown; restored from __doc__
    """
    buildOpticalFlowPyramid(img, winSize, maxLevel[, pyramid[, withDerivatives[, pyrBorder[, derivBorder[, tryReuseInputImage]]]]]) -> retval, pyramid
    .   @brief Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK.
    .   
    .   @param img 8-bit input image.
    .   @param pyramid output pyramid.
    .   @param winSize window size of optical flow algorithm. Must be not less than winSize argument of
    .   calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels.
    .   @param maxLevel 0-based maximal pyramid level number.
    .   @param withDerivatives set to precompute gradients for the every pyramid level. If pyramid is
    .   constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally.
    .   @param pyrBorder the border mode for pyramid layers.
    .   @param derivBorder the border mode for gradients.
    .   @param tryReuseInputImage put ROI of input image into the pyramid if possible. You can pass false
    .   to force data copying.
    .   @return number of levels in constructed pyramid. Can be less than maxLevel.
    """
    pass

def calcBackProject(images, channels, hist, ranges, scale, dst=None): # real signature unknown; restored from __doc__
    """
    calcBackProject(images, channels, hist, ranges, scale[, dst]) -> dst
    .   @overload
    """
    pass

def calcCovarMatrix(samples, mean, flags, covar=None, ctype=None): # real signature unknown; restored from __doc__
    """
    calcCovarMatrix(samples, mean, flags[, covar[, ctype]]) -> covar, mean
    .   @overload
    .   @note use cv::COVAR_ROWS or cv::COVAR_COLS flag
    .   @param samples samples stored as rows/columns of a single matrix.
    .   @param covar output covariance matrix of the type ctype and square size.
    .   @param mean input or output (depending on the flags) array as the average value of the input vectors.
    .   @param flags operation flags as a combination of cv::CovarFlags
    .   @param ctype type of the matrixl; it equals 'CV_64F' by default.
    """
    pass

def calcHist(images, channels, mask, histSize, ranges, hist=None, accumulate=None): # real signature unknown; restored from __doc__
    """
    calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate]]) -> hist
    .   @overload
    """
    pass

def calcOpticalFlowFarneback(prev, next, flow, pyr_scale, levels, winsize, iterations, poly_n, poly_sigma, flags): # real signature unknown; restored from __doc__
    """
    calcOpticalFlowFarneback(prev, next, flow, pyr_scale, levels, winsize, iterations, poly_n, poly_sigma, flags) -> flow
    .   @brief Computes a dense optical flow using the Gunnar Farneback's algorithm.
    .   
    .   @param prev first 8-bit single-channel input image.
    .   @param next second input image of the same size and the same type as prev.
    .   @param flow computed flow image that has the same size as prev and type CV_32FC2.
    .   @param pyr_scale parameter, specifying the image scale (\<1) to build pyramids for each image;
    .   pyr_scale=0.5 means a classical pyramid, where each next layer is twice smaller than the previous
    .   one.
    .   @param levels number of pyramid layers including the initial image; levels=1 means that no extra
    .   layers are created and only the original images are used.
    .   @param winsize averaging window size; larger values increase the algorithm robustness to image
    .   noise and give more chances for fast motion detection, but yield more blurred motion field.
    .   @param iterations number of iterations the algorithm does at each pyramid level.
    .   @param poly_n size of the pixel neighborhood used to find polynomial expansion in each pixel;
    .   larger values mean that the image will be approximated with smoother surfaces, yielding more
    .   robust algorithm and more blurred motion field, typically poly_n =5 or 7.
    .   @param poly_sigma standard deviation of the Gaussian that is used to smooth derivatives used as a
    .   basis for the polynomial expansion; for poly_n=5, you can set poly_sigma=1.1, for poly_n=7, a
    .   good value would be poly_sigma=1.5.
    .   @param flags operation flags that can be a combination of the following:
    .   -   **OPTFLOW_USE_INITIAL_FLOW** uses the input flow as an initial flow approximation.
    .   -   **OPTFLOW_FARNEBACK_GAUSSIAN** uses the Gaussian \f$\texttt{winsize}\times\texttt{winsize}\f$
    .   filter instead of a box filter of the same size for optical flow estimation; usually, this
    .   option gives z more accurate flow than with a box filter, at the cost of lower speed;
    .   normally, winsize for a Gaussian window should be set to a larger value to achieve the same
    .   level of robustness.
    .   
    .   The function finds an optical flow for each prev pixel using the @cite Farneback2003 algorithm so that
    .   
    .   \f[\texttt{prev} (y,x)  \sim \texttt{next} ( y + \texttt{flow} (y,x)[1],  x + \texttt{flow} (y,x)[0])\f]
    .   
    .   @note
    .   
    .   -   An example using the optical flow algorithm described by Gunnar Farneback can be found at
    .   opencv_source_code/samples/cpp/fback.cpp
    .   -   (Python) An example using the optical flow algorithm described by Gunnar Farneback can be
    .   found at opencv_source_code/samples/python/opt_flow.py
    """
    pass

def calcOpticalFlowPyrLK(prevImg, nextImg, prevPts, nextPts, status=None, err=None, winSize=None, maxLevel=None, criteria=None, flags=None, minEigThreshold=None): # real signature unknown; restored from __doc__
    """
    calcOpticalFlowPyrLK(prevImg, nextImg, prevPts, nextPts[, status[, err[, winSize[, maxLevel[, criteria[, flags[, minEigThreshold]]]]]]]) -> nextPts, status, err
    .   @brief Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with
    .   pyramids.
    .   
    .   @param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid.
    .   @param nextImg second input image or pyramid of the same size and the same type as prevImg.
    .   @param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be
    .   single-precision floating-point numbers.
    .   @param nextPts output vector of 2D points (with single-precision floating-point coordinates)
    .   containing the calculated new positions of input features in the second image; when
    .   OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input.
    .   @param status output status vector (of unsigned chars); each element of the vector is set to 1 if
    .   the flow for the corresponding features has been found, otherwise, it is set to 0.
    .   @param err output vector of errors; each element of the vector is set to an error for the
    .   corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't
    .   found then the error is not defined (use the status parameter to find such cases).
    .   @param winSize size of the search window at each pyramid level.
    .   @param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single
    .   level), if set to 1, two levels are used, and so on; if pyramids are passed to input then
    .   algorithm will use as many levels as pyramids have but no more than maxLevel.
    .   @param criteria parameter, specifying the termination criteria of the iterative search algorithm
    .   (after the specified maximum number of iterations criteria.maxCount or when the search window
    .   moves by less than criteria.epsilon.
    .   @param flags operation flags:
    .   -   **OPTFLOW_USE_INITIAL_FLOW** uses initial estimations, stored in nextPts; if the flag is
    .   not set, then prevPts is copied to nextPts and is considered the initial estimate.
    .   -   **OPTFLOW_LK_GET_MIN_EIGENVALS** use minimum eigen values as an error measure (see
    .   minEigThreshold description); if the flag is not set, then L1 distance between patches
    .   around the original and a moved point, divided by number of pixels in a window, is used as a
    .   error measure.
    .   @param minEigThreshold the algorithm calculates the minimum eigen value of a 2x2 normal matrix of
    .   optical flow equations (this matrix is called a spatial gradient matrix in @cite Bouguet00), divided
    .   by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding
    .   feature is filtered out and its flow is not processed, so it allows to remove bad points and get a
    .   performance boost.
    .   
    .   The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See
    .   @cite Bouguet00 . The function is parallelized with the TBB library.
    .   
    .   @note
    .   
    .   -   An example using the Lucas-Kanade optical flow algorithm can be found at
    .   opencv_source_code/samples/cpp/lkdemo.cpp
    .   -   (Python) An example using the Lucas-Kanade optical flow algorithm can be found at
    .   opencv_source_code/samples/python/lk_track.py
    .   -   (Python) An example using the Lucas-Kanade tracker for homography matching can be found at
    .   opencv_source_code/samples/python/lk_homography.py
    """
    pass

def calibrateCamera(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs, rvecs=None, tvecs=None, flags=None, criteria=None): # real signature unknown; restored from __doc__
    """
    calibrateCamera(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs[, rvecs[, tvecs[, flags[, criteria]]]]) -> retval, cameraMatrix, distCoeffs, rvecs, tvecs
    .   @overload double calibrateCamera( InputArrayOfArrays objectPoints,
    .   InputArrayOfArrays imagePoints, Size imageSize,
    .   InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
    .   OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
    .   OutputArray stdDeviations, OutputArray perViewErrors,
    .   int flags = 0, TermCriteria criteria = TermCriteria(
    .   TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) )
    """
    pass

def calibrateCameraExtended(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs, rvecs=None, tvecs=None, stdDeviationsIntrinsics=None, stdDeviationsExtrinsics=None, perViewErrors=None, flags=None, criteria=None): # real signature unknown; restored from __doc__
    """
    calibrateCameraExtended(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs[, rvecs[, tvecs[, stdDeviationsIntrinsics[, stdDeviationsExtrinsics[, perViewErrors[, flags[, criteria]]]]]]]) -> retval, cameraMatrix, distCoeffs, rvecs, tvecs, stdDeviationsIntrinsics, stdDeviationsExtrinsics, perViewErrors
    .   @brief Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.
    .   
    .   @param objectPoints In the new interface it is a vector of vectors of calibration pattern points in
    .   the calibration pattern coordinate space (e.g. std::vector<std::vector<cv::Vec3f>>). The outer
    .   vector contains as many elements as the number of the pattern views. If the same calibration pattern
    .   is shown in each view and it is fully visible, all the vectors will be the same. Although, it is
    .   possible to use partially occluded patterns, or even different patterns in different views. Then,
    .   the vectors will be different. The points are 3D, but since they are in a pattern coordinate system,
    .   then, if the rig is planar, it may make sense to put the model to a XY coordinate plane so that
    .   Z-coordinate of each input object point is 0.
    .   In the old interface all the vectors of object points from different views are concatenated
    .   together.
    .   @param imagePoints In the new interface it is a vector of vectors of the projections of calibration
    .   pattern points (e.g. std::vector<std::vector<cv::Vec2f>>). imagePoints.size() and
    .   objectPoints.size() and imagePoints[i].size() must be equal to objectPoints[i].size() for each i.
    .   In the old interface all the vectors of object points from different views are concatenated
    .   together.
    .   @param imageSize Size of the image used only to initialize the intrinsic camera matrix.
    .   @param cameraMatrix Output 3x3 floating-point camera matrix
    .   \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . If CV\_CALIB\_USE\_INTRINSIC\_GUESS
    .   and/or CALIB_FIX_ASPECT_RATIO are specified, some or all of fx, fy, cx, cy must be
    .   initialized before calling the function.
    .   @param distCoeffs Output vector of distortion coefficients
    .   \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
    .   4, 5, 8, 12 or 14 elements.
    .   @param rvecs Output vector of rotation vectors (see Rodrigues ) estimated for each pattern view
    .   (e.g. std::vector<cv::Mat>>). That is, each k-th rotation vector together with the corresponding
    .   k-th translation vector (see the next output parameter description) brings the calibration pattern
    .   from the model coordinate space (in which object points are specified) to the world coordinate
    .   space, that is, a real position of the calibration pattern in the k-th pattern view (k=0.. *M* -1).
    .   @param tvecs Output vector of translation vectors estimated for each pattern view.
    .   @param stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic parameters.
    .   Order of deviations values:
    .   \f$(f_x, f_y, c_x, c_y, k_1, k_2, p_1, p_2, k_3, k_4, k_5, k_6 , s_1, s_2, s_3,
    .   s_4, \tau_x, \tau_y)\f$ If one of parameters is not estimated, it's deviation is equals to zero.
    .   @param stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic parameters.
    .   Order of deviations values: \f$(R_1, T_1, \dotsc , R_M, T_M)\f$ where M is number of pattern views,
    .   \f$R_i, T_i\f$ are concatenated 1x3 vectors.
    .   @param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view.
    .   @param flags Different flags that may be zero or a combination of the following values:
    .   -   **CALIB_USE_INTRINSIC_GUESS** cameraMatrix contains valid initial values of
    .   fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
    .   center ( imageSize is used), and focal distances are computed in a least-squares fashion.
    .   Note, that if intrinsic parameters are known, there is no need to use this function just to
    .   estimate extrinsic parameters. Use solvePnP instead.
    .   -   **CALIB_FIX_PRINCIPAL_POINT** The principal point is not changed during the global
    .   optimization. It stays at the center or at a different location specified when
    .   CALIB_USE_INTRINSIC_GUESS is set too.
    .   -   **CALIB_FIX_ASPECT_RATIO** The functions considers only fy as a free parameter. The
    .   ratio fx/fy stays the same as in the input cameraMatrix . When
    .   CALIB_USE_INTRINSIC_GUESS is not set, the actual input values of fx and fy are
    .   ignored, only their ratio is computed and used further.
    .   -   **CALIB_ZERO_TANGENT_DIST** Tangential distortion coefficients \f$(p_1, p_2)\f$ are set
    .   to zeros and stay zero.
    .   -   **CALIB_FIX_K1,...,CALIB_FIX_K6** The corresponding radial distortion
    .   coefficient is not changed during the optimization. If CALIB_USE_INTRINSIC_GUESS is
    .   set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
    .   -   **CALIB_RATIONAL_MODEL** Coefficients k4, k5, and k6 are enabled. To provide the
    .   backward compatibility, this extra flag should be explicitly specified to make the
    .   calibration function use the rational model and return 8 coefficients. If the flag is not
    .   set, the function computes and returns only 5 distortion coefficients.
    .   -   **CALIB_THIN_PRISM_MODEL** Coefficients s1, s2, s3 and s4 are enabled. To provide the
    .   backward compatibility, this extra flag should be explicitly specified to make the
    .   calibration function use the thin prism model and return 12 coefficients. If the flag is not
    .   set, the function computes and returns only 5 distortion coefficients.
    .   -   **CALIB_FIX_S1_S2_S3_S4** The thin prism distortion coefficients are not changed during
    .   the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
    .   supplied distCoeffs matrix is used. Otherwise, it is set to 0.
    .   -   **CALIB_TILTED_MODEL** Coefficients tauX and tauY are enabled. To provide the
    .   backward compatibility, this extra flag should be explicitly specified to make the
    .   calibration function use the tilted sensor model and return 14 coefficients. If the flag is not
    .   set, the function computes and returns only 5 distortion coefficients.
    .   -   **CALIB_FIX_TAUX_TAUY** The coefficients of the tilted sensor model are not changed during
    .   the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
    .   supplied distCoeffs matrix is used. Otherwise, it is set to 0.
    .   @param criteria Termination criteria for the iterative optimization algorithm.
    .   
    .   @return the overall RMS re-projection error.
    .   
    .   The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
    .   views. The algorithm is based on @cite Zhang2000 and @cite BouguetMCT . The coordinates of 3D object
    .   points and their corresponding 2D projections in each view must be specified. That may be achieved
    .   by using an object with a known geometry and easily detectable feature points. Such an object is
    .   called a calibration rig or calibration pattern, and OpenCV has built-in support for a chessboard as
    .   a calibration rig (see findChessboardCorners ). Currently, initialization of intrinsic parameters
    .   (when CALIB_USE_INTRINSIC_GUESS is not set) is only implemented for planar calibration
    .   patterns (where Z-coordinates of the object points must be all zeros). 3D calibration rigs can also
    .   be used as long as initial cameraMatrix is provided.
    .   
    .   The algorithm performs the following steps:
    .   
    .   -   Compute the initial intrinsic parameters (the option only available for planar calibration
    .   patterns) or read them from the input parameters. The distortion coefficients are all set to
    .   zeros initially unless some of CALIB_FIX_K? are specified.
    .   
    .   -   Estimate the initial camera pose as if the intrinsic parameters have been already known. This is
    .   done using solvePnP .
    .   
    .   -   Run the global Levenberg-Marquardt optimization algorithm to minimize the reprojection error,
    .   that is, the total sum of squared distances between the observed feature points imagePoints and
    .   the projected (using the current estimates for camera parameters and the poses) object points
    .   objectPoints. See projectPoints for details.
    .   
    .   @note
    .   If you use a non-square (=non-NxN) grid and findChessboardCorners for calibration, and
    .   calibrateCamera returns bad values (zero distortion coefficients, an image center very far from
    .   (w/2-0.5,h/2-0.5), and/or large differences between \f$f_x\f$ and \f$f_y\f$ (ratios of 10:1 or more)),
    .   then you have probably used patternSize=cvSize(rows,cols) instead of using
    .   patternSize=cvSize(cols,rows) in findChessboardCorners .
    .   
    .   @sa
    .   findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate, undistort
    """
    pass

def calibrationMatrixValues(cameraMatrix, imageSize, apertureWidth, apertureHeight): # real signature unknown; restored from __doc__
    """
    calibrationMatrixValues(cameraMatrix, imageSize, apertureWidth, apertureHeight) -> fovx, fovy, focalLength, principalPoint, aspectRatio
    .   @brief Computes useful camera characteristics from the camera matrix.
    .   
    .   @param cameraMatrix Input camera matrix that can be estimated by calibrateCamera or
    .   stereoCalibrate .
    .   @param imageSize Input image size in pixels.
    .   @param apertureWidth Physical width in mm of the sensor.
    .   @param apertureHeight Physical height in mm of the sensor.
    .   @param fovx Output field of view in degrees along the horizontal sensor axis.
    .   @param fovy Output field of view in degrees along the vertical sensor axis.
    .   @param focalLength Focal length of the lens in mm.
    .   @param principalPoint Principal point in mm.
    .   @param aspectRatio \f$f_y/f_x\f$
    .   
    .   The function computes various useful camera characteristics from the previously estimated camera
    .   matrix.
    .   
    .   @note
    .   Do keep in mind that the unity measure 'mm' stands for whatever unit of measure one chooses for
    .   the chessboard pitch (it can thus be any value).
    """
    pass

def CamShift(probImage, window, criteria): # real signature unknown; restored from __doc__
    """
    CamShift(probImage, window, criteria) -> retval, window
    .   @brief Finds an object center, size, and orientation.
    .   
    .   @param probImage Back projection of the object histogram. See calcBackProject.
    .   @param window Initial search window.
    .   @param criteria Stop criteria for the underlying meanShift.
    .   returns
    .   (in old interfaces) Number of iterations CAMSHIFT took to converge
    .   The function implements the CAMSHIFT object tracking algorithm @cite Bradski98 . First, it finds an
    .   object center using meanShift and then adjusts the window size and finds the optimal rotation. The
    .   function returns the rotated rectangle structure that includes the object position, size, and
    .   orientation. The next position of the search window can be obtained with RotatedRect::boundingRect()
    .   
    .   See the OpenCV sample camshiftdemo.c that tracks colored objects.
    .   
    .   @note
    .   -   (Python) A sample explaining the camshift tracking algorithm can be found at
    .   opencv_source_code/samples/python/camshift.py
    """
    pass

def Canny(image, threshold1, threshold2, edges=None, apertureSize=None, L2gradient=None): # real signature unknown; restored from __doc__
    """
    Canny(image, threshold1, threshold2[, edges[, apertureSize[, L2gradient]]]) -> edges
    .   @brief Finds edges in an image using the Canny algorithm @cite Canny86 .
    .   
    .   The function finds edges in the input image image and marks them in the output map edges using the
    .   Canny algorithm. The smallest value between threshold1 and threshold2 is used for edge linking. The
    .   largest value is used to find initial segments of strong edges. See
    .   <http://en.wikipedia.org/wiki/Canny_edge_detector>
    .   
    .   @param image 8-bit input image.
    .   @param edges output edge map; single channels 8-bit image, which has the same size as image .
    .   @param threshold1 first threshold for the hysteresis procedure.
    .   @param threshold2 second threshold for the hysteresis procedure.
    .   @param apertureSize aperture size for the Sobel operator.
    .   @param L2gradient a flag, indicating whether a more accurate \f$L_2\f$ norm
    .   \f$=\sqrt{(dI/dx)^2 + (dI/dy)^2}\f$ should be used to calculate the image gradient magnitude (
    .   L2gradient=true ), or whether the default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough (
    .   L2gradient=false ).
    
    
    
    Canny(dx, dy, threshold1, threshold2[, edges[, L2gradient]]) -> edges
    .   \overload
    .   
    .   Finds edges in an image using the Canny algorithm with custom image gradient.
    .   
    .   @param dx 16-bit x derivative of input image (CV_16SC1 or CV_16SC3).
    .   @param dy 16-bit y derivative of input image (same type as dx).
    .   @param edges,threshold1,threshold2,L2gradient See cv::Canny
    """
    pass

def cartToPolar(x, y, magnitude=None, angle=None, angleInDegrees=None): # real signature unknown; restored from __doc__
    """
    cartToPolar(x, y[, magnitude[, angle[, angleInDegrees]]]) -> magnitude, angle
    .   @brief Calculates the magnitude and angle of 2D vectors.
    .   
    .   The function cv::cartToPolar calculates either the magnitude, angle, or both
    .   for every 2D vector (x(I),y(I)):
    .   \f[\begin{array}{l} \texttt{magnitude} (I)= \sqrt{\texttt{x}(I)^2+\texttt{y}(I)^2} , \\ \texttt{angle} (I)= \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))[ \cdot180 / \pi ] \end{array}\f]
    .   
    .   The angles are calculated with accuracy about 0.3 degrees. For the point
    .   (0,0), the angle is set to 0.
    .   @param x array of x-coordinates; this must be a single-precision or
    .   double-precision floating-point array.
    .   @param y array of y-coordinates, that must have the same size and same type as x.
    .   @param magnitude output array of magnitudes of the same size and type as x.
    .   @param angle output array of angles that has the same size and type as
    .   x; the angles are measured in radians (from 0 to 2\*Pi) or in degrees (0 to 360 degrees).
    .   @param angleInDegrees a flag, indicating whether the angles are measured
    .   in radians (which is by default), or in degrees.
    .   @sa Sobel, Scharr
    """
    pass

def CascadeClassifier(filename=None): # real signature unknown; restored from __doc__
    """
    CascadeClassifier([filename]) -> <CascadeClassifier object>
    .
    """
    pass

def CascadeClassifier_convert(oldcascade, newcascade): # real signature unknown; restored from __doc__
    """
    CascadeClassifier_convert(oldcascade, newcascade) -> retval
    .
    """
    pass

def checkHardwareSupport(feature): # real signature unknown; restored from __doc__
    """
    checkHardwareSupport(feature) -> retval
    .   @brief Returns true if the specified feature is supported by the host hardware.
    .   
    .   The function returns true if the host hardware supports the specified feature. When user calls
    .   setUseOptimized(false), the subsequent calls to checkHardwareSupport() will return false until
    .   setUseOptimized(true) is called. This way user can dynamically switch on and off the optimized code
    .   in OpenCV.
    .   @param feature The feature of interest, one of cv::CpuFeatures
    """
    pass

def checkRange(a, quiet=None, minVal=None, maxVal=None): # real signature unknown; restored from __doc__
    """
    checkRange(a[, quiet[, minVal[, maxVal]]]) -> retval, pos
    .   @brief Checks every element of an input array for invalid values.
    .   
    .   The function cv::checkRange checks that every array element is neither NaN nor infinite. When minVal \>
    .   -DBL_MAX and maxVal \< DBL_MAX, the function also checks that each value is between minVal and
    .   maxVal. In case of multi-channel arrays, each channel is processed independently. If some values
    .   are out of range, position of the first outlier is stored in pos (when pos != NULL). Then, the
    .   function either returns false (when quiet=true) or throws an exception.
    .   @param a input array.
    .   @param quiet a flag, indicating whether the functions quietly return false when the array elements
    .   are out of range or they throw an exception.
    .   @param pos optional output parameter, when not NULL, must be a pointer to array of src.dims
    .   elements.
    .   @param minVal inclusive lower boundary of valid values range.
    .   @param maxVal exclusive upper boundary of valid values range.
    """
    pass

def circle(img, center, radius, color, thickness=None, lineType=None, shift=None): # real signature unknown; restored from __doc__
    """
    circle(img, center, radius, color[, thickness[, lineType[, shift]]]) -> img
    .   @brief Draws a circle.
    .   
    .   The function circle draws a simple or filled circle with a given center and radius.
    .   @param img Image where the circle is drawn.
    .   @param center Center of the circle.
    .   @param radius Radius of the circle.
    .   @param color Circle color.
    .   @param thickness Thickness of the circle outline, if positive. Negative thickness means that a
    .   filled circle is to be drawn.
    .   @param lineType Type of the circle boundary. See the line description.
    .   @param shift Number of fractional bits in the coordinates of the center and in the radius value.
    """
    pass

def CirclesGridFinderParameters(): # real signature unknown; restored from __doc__
    """
    CirclesGridFinderParameters() -> <CirclesGridFinderParameters object>
    .
    """
    pass

def clipLine(imgRect, pt1, pt2): # real signature unknown; restored from __doc__
    """
    clipLine(imgRect, pt1, pt2) -> retval, pt1, pt2
    .   @overload
    .   @param imgRect Image rectangle.
    .   @param pt1 First line point.
    .   @param pt2 Second line point.
    """
    pass

def colorChange(src, mask, dst=None, red_mul=None, green_mul=None, blue_mul=None): # real signature unknown; restored from __doc__
    """
    colorChange(src, mask[, dst[, red_mul[, green_mul[, blue_mul]]]]) -> dst
    .   @brief Given an original color image, two differently colored versions of this image can be mixed
    .   seamlessly.
    .   
    .   @param src Input 8-bit 3-channel image.
    .   @param mask Input 8-bit 1 or 3-channel image.
    .   @param dst Output image with the same size and type as src .
    .   @param red_mul R-channel multiply factor.
    .   @param green_mul G-channel multiply factor.
    .   @param blue_mul B-channel multiply factor.
    .   
    .   Multiplication factor is between .5 to 2.5.
    """
    pass

def compare(src1, src2, cmpop, dst=None): # real signature unknown; restored from __doc__
    """
    compare(src1, src2, cmpop[, dst]) -> dst
    .   @brief Performs the per-element comparison of two arrays or an array and scalar value.
    .   
    .   The function compares:
    .   *   Elements of two arrays when src1 and src2 have the same size:
    .   \f[\texttt{dst} (I) =  \texttt{src1} (I)  \,\texttt{cmpop}\, \texttt{src2} (I)\f]
    .   *   Elements of src1 with a scalar src2 when src2 is constructed from
    .   Scalar or has a single element:
    .   \f[\texttt{dst} (I) =  \texttt{src1}(I) \,\texttt{cmpop}\,  \texttt{src2}\f]
    .   *   src1 with elements of src2 when src1 is constructed from Scalar or
    .   has a single element:
    .   \f[\texttt{dst} (I) =  \texttt{src1}  \,\texttt{cmpop}\, \texttt{src2} (I)\f]
    .   When the comparison result is true, the corresponding element of output
    .   array is set to 255. The comparison operations can be replaced with the
    .   equivalent matrix expressions:
    .   @code{.cpp}
    .   Mat dst1 = src1 >= src2;
    .   Mat dst2 = src1 < 8;
    .   ...
    .   @endcode
    .   @param src1 first input array or a scalar; when it is an array, it must have a single channel.
    .   @param src2 second input array or a scalar; when it is an array, it must have a single channel.
    .   @param dst output array of type ref CV_8U that has the same size and the same number of channels as
    .   the input arrays.
    .   @param cmpop a flag, that specifies correspondence between the arrays (cv::CmpTypes)
    .   @sa checkRange, min, max, threshold
    """
    pass

def compareHist(H1, H2, method): # real signature unknown; restored from __doc__
    """
    compareHist(H1, H2, method) -> retval
    .   @brief Compares two histograms.
    .   
    .   The function cv::compareHist compares two dense or two sparse histograms using the specified method.
    .   
    .   The function returns \f$d(H_1, H_2)\f$ .
    .   
    .   While the function works well with 1-, 2-, 3-dimensional dense histograms, it may not be suitable
    .   for high-dimensional sparse histograms. In such histograms, because of aliasing and sampling
    .   problems, the coordinates of non-zero histogram bins can slightly shift. To compare such histograms
    .   or more general sparse configurations of weighted points, consider using the cv::EMD function.
    .   
    .   @param H1 First compared histogram.
    .   @param H2 Second compared histogram of the same size as H1 .
    .   @param method Comparison method, see cv::HistCompMethods
    """
    pass

def completeSymm(mtx, lowerToUpper=None): # real signature unknown; restored from __doc__
    """
    completeSymm(mtx[, lowerToUpper]) -> mtx
    .   @brief Copies the lower or the upper half of a square matrix to another half.
    .   
    .   The function cv::completeSymm copies the lower half of a square matrix to
    .   its another half. The matrix diagonal remains unchanged:
    .   *   \f$\texttt{mtx}_{ij}=\texttt{mtx}_{ji}\f$ for \f$i > j\f$ if
    .   lowerToUpper=false
    .   *   \f$\texttt{mtx}_{ij}=\texttt{mtx}_{ji}\f$ for \f$i < j\f$ if
    .   lowerToUpper=true
    .   @param mtx input-output floating-point square matrix.
    .   @param lowerToUpper operation flag; if true, the lower half is copied to
    .   the upper half. Otherwise, the upper half is copied to the lower half.
    .   @sa flip, transpose
    """
    pass

def composeRT(rvec1, tvec1, rvec2, tvec2, rvec3=None, tvec3=None, dr3dr1=None, dr3dt1=None, dr3dr2=None, dr3dt2=None, dt3dr1=None, dt3dt1=None, dt3dr2=None, dt3dt2=None): # real signature unknown; restored from __doc__
    """
    composeRT(rvec1, tvec1, rvec2, tvec2[, rvec3[, tvec3[, dr3dr1[, dr3dt1[, dr3dr2[, dr3dt2[, dt3dr1[, dt3dt1[, dt3dr2[, dt3dt2]]]]]]]]]]) -> rvec3, tvec3, dr3dr1, dr3dt1, dr3dr2, dr3dt2, dt3dr1, dt3dt1, dt3dr2, dt3dt2
    .   @brief Combines two rotation-and-shift transformations.
    .   
    .   @param rvec1 First rotation vector.
    .   @param tvec1 First translation vector.
    .   @param rvec2 Second rotation vector.
    .   @param tvec2 Second translation vector.
    .   @param rvec3 Output rotation vector of the superposition.
    .   @param tvec3 Output translation vector of the superposition.
    .   @param dr3dr1
    .   @param dr3dt1
    .   @param dr3dr2
    .   @param dr3dt2
    .   @param dt3dr1
    .   @param dt3dt1
    .   @param dt3dr2
    .   @param dt3dt2 Optional output derivatives of rvec3 or tvec3 with regard to rvec1, rvec2, tvec1 and
    .   tvec2, respectively.
    .   
    .   The functions compute:
    .   
    .   \f[\begin{array}{l} \texttt{rvec3} =  \mathrm{rodrigues} ^{-1} \left ( \mathrm{rodrigues} ( \texttt{rvec2} )  \cdot \mathrm{rodrigues} ( \texttt{rvec1} ) \right )  \\ \texttt{tvec3} =  \mathrm{rodrigues} ( \texttt{rvec2} )  \cdot \texttt{tvec1} +  \texttt{tvec2} \end{array} ,\f]
    .   
    .   where \f$\mathrm{rodrigues}\f$ denotes a rotation vector to a rotation matrix transformation, and
    .   \f$\mathrm{rodrigues}^{-1}\f$ denotes the inverse transformation. See Rodrigues for details.
    .   
    .   Also, the functions can compute the derivatives of the output vectors with regards to the input
    .   vectors (see matMulDeriv ). The functions are used inside stereoCalibrate but can also be used in
    .   your own code where Levenberg-Marquardt or another gradient-based solver is used to optimize a
    .   function that contains a matrix multiplication.
    """
    pass

def computeCorrespondEpilines(points, whichImage, F, lines=None): # real signature unknown; restored from __doc__
    """
    computeCorrespondEpilines(points, whichImage, F[, lines]) -> lines
    .   @brief For points in an image of a stereo pair, computes the corresponding epilines in the other image.
    .   
    .   @param points Input points. \f$N \times 1\f$ or \f$1 \times N\f$ matrix of type CV_32FC2 or
    .   vector\<Point2f\> .
    .   @param whichImage Index of the image (1 or 2) that contains the points .
    .   @param F Fundamental matrix that can be estimated using findFundamentalMat or stereoRectify .
    .   @param lines Output vector of the epipolar lines corresponding to the points in the other image.
    .   Each line \f$ax + by + c=0\f$ is encoded by 3 numbers \f$(a, b, c)\f$ .
    .   
    .   For every point in one of the two images of a stereo pair, the function finds the equation of the
    .   corresponding epipolar line in the other image.
    .   
    .   From the fundamental matrix definition (see findFundamentalMat ), line \f$l^{(2)}_i\f$ in the second
    .   image for the point \f$p^{(1)}_i\f$ in the first image (when whichImage=1 ) is computed as:
    .   
    .   \f[l^{(2)}_i = F p^{(1)}_i\f]
    .   
    .   And vice versa, when whichImage=2, \f$l^{(1)}_i\f$ is computed from \f$p^{(2)}_i\f$ as:
    .   
    .   \f[l^{(1)}_i = F^T p^{(2)}_i\f]
    .   
    .   Line coefficients are defined up to a scale. They are normalized so that \f$a_i^2+b_i^2=1\f$ .
    """
    pass

def connectedComponents(image, labels=None, connectivity=None, ltype=None): # real signature unknown; restored from __doc__
    """
    connectedComponents(image[, labels[, connectivity[, ltype]]]) -> retval, labels
    .   @overload
    .   
    .   @param image the 8-bit single-channel image to be labeled
    .   @param labels destination labeled image
    .   @param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
    .   @param ltype output image label type. Currently CV_32S and CV_16U are supported.
    """
    pass

def connectedComponentsWithAlgorithm(image, connectivity, ltype, ccltype, labels=None): # real signature unknown; restored from __doc__
    """
    connectedComponentsWithAlgorithm(image, connectivity, ltype, ccltype[, labels]) -> retval, labels
    .   @brief computes the connected components labeled image of boolean image
    .   
    .   image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0
    .   represents the background label. ltype specifies the output label image type, an important
    .   consideration based on the total number of labels or alternatively the total number of pixels in
    .   the source image. ccltype specifies the connected components labeling algorithm to use, currently
    .   Grana (BBDT) and Wu's (SAUF) algorithms are supported, see the cv::ConnectedComponentsAlgorithmsTypes
    .   for details. Note that SAUF algorithm forces a row major ordering of labels while BBDT does not.
    .   This function uses parallel version of both Grana and Wu's algorithms if at least one allowed
    .   parallel framework is enabled and if the rows of the image are at least twice the number returned by getNumberOfCPUs.
    .   
    .   @param image the 8-bit single-channel image to be labeled
    .   @param labels destination labeled image
    .   @param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
    .   @param ltype output image label type. Currently CV_32S and CV_16U are supported.
    .   @param ccltype connected components algorithm type (see the cv::ConnectedComponentsAlgorithmsTypes).
    """
    pass

def connectedComponentsWithStats(image, labels=None, stats=None, centroids=None, connectivity=None, ltype=None): # real signature unknown; restored from __doc__
    """
    connectedComponentsWithStats(image[, labels[, stats[, centroids[, connectivity[, ltype]]]]]) -> retval, labels, stats, centroids
    .   @overload
    .   @param image the 8-bit single-channel image to be labeled
    .   @param labels destination labeled image
    .   @param stats statistics output for each label, including the background label, see below for
    .   available statistics. Statistics are accessed via stats(label, COLUMN) where COLUMN is one of
    .   cv::ConnectedComponentsTypes. The data type is CV_32S.
    .   @param centroids centroid output for each label, including the background label. Centroids are
    .   accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F.
    .   @param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
    .   @param ltype output image label type. Currently CV_32S and CV_16U are supported.
    """
    pass

def connectedComponentsWithStatsWithAlgorithm(image, connectivity, ltype, ccltype, labels=None, stats=None, centroids=None): # real signature unknown; restored from __doc__
    """
    connectedComponentsWithStatsWithAlgorithm(image, connectivity, ltype, ccltype[, labels[, stats[, centroids]]]) -> retval, labels, stats, centroids
    .   @brief computes the connected components labeled image of boolean image and also produces a statistics output for each label
    .   
    .   image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0
    .   represents the background label. ltype specifies the output label image type, an important
    .   consideration based on the total number of labels or alternatively the total number of pixels in
    .   the source image. ccltype specifies the connected components labeling algorithm to use, currently
    .   Grana's (BBDT) and Wu's (SAUF) algorithms are supported, see the cv::ConnectedComponentsAlgorithmsTypes
    .   for details. Note that SAUF algorithm forces a row major ordering of labels while BBDT does not.
    .   This function uses parallel version of both Grana and Wu's algorithms (statistics included) if at least one allowed
    .   parallel framework is enabled and if the rows of the image are at least twice the number returned by getNumberOfCPUs.
    .   
    .   @param image the 8-bit single-channel image to be labeled
    .   @param labels destination labeled image
    .   @param stats statistics output for each label, including the background label, see below for
    .   available statistics. Statistics are accessed via stats(label, COLUMN) where COLUMN is one of
    .   cv::ConnectedComponentsTypes. The data type is CV_32S.
    .   @param centroids centroid output for each label, including the background label. Centroids are
    .   accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F.
    .   @param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
    .   @param ltype output image label type. Currently CV_32S and CV_16U are supported.
    .   @param ccltype connected components algorithm type (see the cv::ConnectedComponentsAlgorithmsTypes).
    """
    pass

def contourArea(contour, oriented=None): # real signature unknown; restored from __doc__
    """
    contourArea(contour[, oriented]) -> retval
    .   @brief Calculates a contour area.
    .   
    .   The function computes a contour area. Similarly to moments , the area is computed using the Green
    .   formula. Thus, the returned area and the number of non-zero pixels, if you draw the contour using
    .   drawContours or fillPoly , can be different. Also, the function will most certainly give a wrong
    .   results for contours with self-intersections.
    .   
    .   Example:
    .   @code
    .   vector<Point> contour;
    .   contour.push_back(Point2f(0, 0));
    .   contour.push_back(Point2f(10, 0));
    .   contour.push_back(Point2f(10, 10));
    .   contour.push_back(Point2f(5, 4));
    .   
    .   double area0 = contourArea(contour);
    .   vector<Point> approx;
    .   approxPolyDP(contour, approx, 5, true);
    .   double area1 = contourArea(approx);
    .   
    .   cout << "area0 =" << area0 << endl <<
    .   "area1 =" << area1 << endl <<
    .   "approx poly vertices" << approx.size() << endl;
    .   @endcode
    .   @param contour Input vector of 2D points (contour vertices), stored in std::vector or Mat.
    .   @param oriented Oriented area flag. If it is true, the function returns a signed area value,
    .   depending on the contour orientation (clockwise or counter-clockwise). Using this feature you can
    .   determine orientation of a contour by taking the sign of an area. By default, the parameter is
    .   false, which means that the absolute value is returned.
    """
    pass

def convertFp16(src, dst=None): # real signature unknown; restored from __doc__
    """
    convertFp16(src[, dst]) -> dst
    .   @brief Converts an array to half precision floating number.
    .   
    .   This function converts FP32 (single precision floating point) from/to FP16 (half precision floating point).  The input array has to have type of CV_32F or
    .   CV_16S to represent the bit depth.  If the input array is neither of them, the function will raise an error.
    .   The format of half precision floating point is defined in IEEE 754-2008.
    .   
    .   @param src input array.
    .   @param dst output array.
    """
    pass

def convertMaps(map1, map2, dstmap1type, dstmap1=None, dstmap2=None, nninterpolation=None): # real signature unknown; restored from __doc__
    """
    convertMaps(map1, map2, dstmap1type[, dstmap1[, dstmap2[, nninterpolation]]]) -> dstmap1, dstmap2
    .   @brief Converts image transformation maps from one representation to another.
    .   
    .   The function converts a pair of maps for remap from one representation to another. The following
    .   options ( (map1.type(), map2.type()) \f$\rightarrow\f$ (dstmap1.type(), dstmap2.type()) ) are
    .   supported:
    .   
    .   - \f$\texttt{(CV_32FC1, CV_32FC1)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\f$. This is the
    .   most frequently used conversion operation, in which the original floating-point maps (see remap )
    .   are converted to a more compact and much faster fixed-point representation. The first output array
    .   contains the rounded coordinates and the second array (created only when nninterpolation=false )
    .   contains indices in the interpolation tables.
    .   
    .   - \f$\texttt{(CV_32FC2)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\f$. The same as above but
    .   the original maps are stored in one 2-channel matrix.
    .   
    .   - Reverse conversion. Obviously, the reconstructed floating-point maps will not be exactly the same
    .   as the originals.
    .   
    .   @param map1 The first input map of type CV_16SC2, CV_32FC1, or CV_32FC2 .
    .   @param map2 The second input map of type CV_16UC1, CV_32FC1, or none (empty matrix),
    .   respectively.
    .   @param dstmap1 The first output map that has the type dstmap1type and the same size as src .
    .   @param dstmap2 The second output map.
    .   @param dstmap1type Type of the first output map that should be CV_16SC2, CV_32FC1, or
    .   CV_32FC2 .
    .   @param nninterpolation Flag indicating whether the fixed-point maps are used for the
    .   nearest-neighbor or for a more complex interpolation.
    .   
    .   @sa  remap, undistort, initUndistortRectifyMap
    """
    pass

def convertPointsFromHomogeneous(src, dst=None): # real signature unknown; restored from __doc__
    """
    convertPointsFromHomogeneous(src[, dst]) -> dst
    .   @brief Converts points from homogeneous to Euclidean space.
    .   
    .   @param src Input vector of N-dimensional points.
    .   @param dst Output vector of N-1-dimensional points.
    .   
    .   The function converts points homogeneous to Euclidean space using perspective projection. That is,
    .   each point (x1, x2, ... x(n-1), xn) is converted to (x1/xn, x2/xn, ..., x(n-1)/xn). When xn=0, the
    .   output point coordinates will be (0,0,0,...).
    """
    pass

def convertPointsToHomogeneous(src, dst=None): # real signature unknown; restored from __doc__
    """
    convertPointsToHomogeneous(src[, dst]) -> dst
    .   @brief Converts points from Euclidean to homogeneous space.
    .   
    .   @param src Input vector of N-dimensional points.
    .   @param dst Output vector of N+1-dimensional points.
    .   
    .   The function converts points from Euclidean to homogeneous space by appending 1's to the tuple of
    .   point coordinates. That is, each point (x1, x2, ..., xn) is converted to (x1, x2, ..., xn, 1).
    """
    pass

def convertScaleAbs(src, dst=None, alpha=None, beta=None): # real signature unknown; restored from __doc__
    """
    convertScaleAbs(src[, dst[, alpha[, beta]]]) -> dst
    .   @brief Scales, calculates absolute values, and converts the result to 8-bit.
    .   
    .   On each element of the input array, the function convertScaleAbs
    .   performs three operations sequentially: scaling, taking an absolute
    .   value, conversion to an unsigned 8-bit type:
    .   \f[\texttt{dst} (I)= \texttt{saturate\_cast<uchar>} (| \texttt{src} (I)* \texttt{alpha} +  \texttt{beta} |)\f]
    .   In case of multi-channel arrays, the function processes each channel
    .   independently. When the output is not 8-bit, the operation can be
    .   emulated by calling the Mat::convertTo method (or by using matrix
    .   expressions) and then by calculating an absolute value of the result.
    .   For example:
    .   @code{.cpp}
    .   Mat_<float> A(30,30);
    .   randu(A, Scalar(-100), Scalar(100));
    .   Mat_<float> B = A*5 + 3;
    .   B = abs(B);
    .   // Mat_<float> B = abs(A*5+3) will also do the job,
    .   // but it will allocate a temporary matrix
    .   @endcode
    .   @param src input array.
    .   @param dst output array.
    .   @param alpha optional scale factor.
    .   @param beta optional delta added to the scaled values.
    .   @sa  Mat::convertTo, cv::abs(const Mat&)
    """
    pass

def convexHull(points, hull=None, clockwise=None, returnPoints=None): # real signature unknown; restored from __doc__
    """
    convexHull(points[, hull[, clockwise[, returnPoints]]]) -> hull
    .   @brief Finds the convex hull of a point set.
    .   
    .   The function cv::convexHull finds the convex hull of a 2D point set using the Sklansky's algorithm @cite Sklansky82
    .   that has *O(N logN)* complexity in the current implementation. See the OpenCV sample convexhull.cpp
    .   that demonstrates the usage of different function variants.
    .   
    .   @param points Input 2D point set, stored in std::vector or Mat.
    .   @param hull Output convex hull. It is either an integer vector of indices or vector of points. In
    .   the first case, the hull elements are 0-based indices of the convex hull points in the original
    .   array (since the set of convex hull points is a subset of the original point set). In the second
    .   case, hull elements are the convex hull points themselves.
    .   @param clockwise Orientation flag. If it is true, the output convex hull is oriented clockwise.
    .   Otherwise, it is oriented counter-clockwise. The assumed coordinate system has its X axis pointing
    .   to the right, and its Y axis pointing upwards.
    .   @param returnPoints Operation flag. In case of a matrix, when the flag is true, the function
    .   returns convex hull points. Otherwise, it returns indices of the convex hull points. When the
    .   output array is std::vector, the flag is ignored, and the output depends on the type of the
    .   vector: std::vector\<int\> implies returnPoints=false, std::vector\<Point\> implies
    .   returnPoints=true.
    """
    pass

def convexityDefects(contour, convexhull, convexityDefects=None): # real signature unknown; restored from __doc__
    """
    convexityDefects(contour, convexhull[, convexityDefects]) -> convexityDefects
    .   @brief Finds the convexity defects of a contour.
    .   
    .   The figure below displays convexity defects of a hand contour:
    .   
    .   ![image](pics/defects.png)
    .   
    .   @param contour Input contour.
    .   @param convexhull Convex hull obtained using convexHull that should contain indices of the contour
    .   points that make the hull.
    .   @param convexityDefects The output vector of convexity defects. In C++ and the new Python/Java
    .   interface each convexity defect is represented as 4-element integer vector (a.k.a. cv::Vec4i):
    .   (start_index, end_index, farthest_pt_index, fixpt_depth), where indices are 0-based indices
    .   in the original contour of the convexity defect beginning, end and the farthest point, and
    .   fixpt_depth is fixed-point approximation (with 8 fractional bits) of the distance between the
    .   farthest contour point and the hull. That is, to get the floating-point value of the depth will be
    .   fixpt_depth/256.0.
    """
    pass

def copyMakeBorder(src, top, bottom, left, right, borderType, dst=None, value=None): # real signature unknown; restored from __doc__
    """
    copyMakeBorder(src, top, bottom, left, right, borderType[, dst[, value]]) -> dst
    .   @brief Forms a border around an image.
    .   
    .   The function copies the source image into the middle of the destination image. The areas to the
    .   left, to the right, above and below the copied source image will be filled with extrapolated
    .   pixels. This is not what filtering functions based on it do (they extrapolate pixels on-fly), but
    .   what other more complex functions, including your own, may do to simplify image boundary handling.
    .   
    .   The function supports the mode when src is already in the middle of dst . In this case, the
    .   function does not copy src itself but simply constructs the border, for example:
    .   
    .   @code{.cpp}
    .   // let border be the same in all directions
    .   int border=2;
    .   // constructs a larger image to fit both the image and the border
    .   Mat gray_buf(rgb.rows + border*2, rgb.cols + border*2, rgb.depth());
    .   // select the middle part of it w/o copying data
    .   Mat gray(gray_canvas, Rect(border, border, rgb.cols, rgb.rows));
    .   // convert image from RGB to grayscale
    .   cvtColor(rgb, gray, COLOR_RGB2GRAY);
    .   // form a border in-place
    .   copyMakeBorder(gray, gray_buf, border, border,
    .   border, border, BORDER_REPLICATE);
    .   // now do some custom filtering ...
    .   ...
    .   @endcode
    .   @note When the source image is a part (ROI) of a bigger image, the function will try to use the
    .   pixels outside of the ROI to form a border. To disable this feature and always do extrapolation, as
    .   if src was not a ROI, use borderType | BORDER_ISOLATED.
    .   
    .   @param src Source image.
    .   @param dst Destination image of the same type as src and the size Size(src.cols+left+right,
    .   src.rows+top+bottom) .
    .   @param top
    .   @param bottom
    .   @param left
    .   @param right Parameter specifying how many pixels in each direction from the source image rectangle
    .   to extrapolate. For example, top=1, bottom=1, left=1, right=1 mean that 1 pixel-wide border needs
    .   to be built.
    .   @param borderType Border type. See borderInterpolate for details.
    .   @param value Border value if borderType==BORDER_CONSTANT .
    .   
    .   @sa  borderInterpolate
    """
    pass

def cornerEigenValsAndVecs(src, blockSize, ksize, dst=None, borderType=None): # real signature unknown; restored from __doc__
    """
    cornerEigenValsAndVecs(src, blockSize, ksize[, dst[, borderType]]) -> dst
    .   @brief Calculates eigenvalues and eigenvectors of image blocks for corner detection.
    .   
    .   For every pixel \f$p\f$ , the function cornerEigenValsAndVecs considers a blockSize \f$\times\f$ blockSize
    .   neighborhood \f$S(p)\f$ . It calculates the covariation matrix of derivatives over the neighborhood as:
    .   
    .   \f[M =  \begin{bmatrix} \sum _{S(p)}(dI/dx)^2 &  \sum _{S(p)}dI/dx dI/dy  \\ \sum _{S(p)}dI/dx dI/dy &  \sum _{S(p)}(dI/dy)^2 \end{bmatrix}\f]
    .   
    .   where the derivatives are computed using the Sobel operator.
    .   
    .   After that, it finds eigenvectors and eigenvalues of \f$M\f$ and stores them in the destination image as
    .   \f$(\lambda_1, \lambda_2, x_1, y_1, x_2, y_2)\f$ where
    .   
    .   -   \f$\lambda_1, \lambda_2\f$ are the non-sorted eigenvalues of \f$M\f$
    .   -   \f$x_1, y_1\f$ are the eigenvectors corresponding to \f$\lambda_1\f$
    .   -   \f$x_2, y_2\f$ are the eigenvectors corresponding to \f$\lambda_2\f$
    .   
    .   The output of the function can be used for robust edge or corner detection.
    .   
    .   @param src Input single-channel 8-bit or floating-point image.
    .   @param dst Image to store the results. It has the same size as src and the type CV_32FC(6) .
    .   @param blockSize Neighborhood size (see details below).
    .   @param ksize Aperture parameter for the Sobel operator.
    .   @param borderType Pixel extrapolation method. See cv::BorderTypes.
    .   
    .   @sa  cornerMinEigenVal, cornerHarris, preCornerDetect
    """
    pass

def cornerHarris(src, blockSize, ksize, k, dst=None, borderType=None): # real signature unknown; restored from __doc__
    """
    cornerHarris(src, blockSize, ksize, k[, dst[, borderType]]) -> dst
    .   @brief Harris corner detector.
    .   
    .   The function runs the Harris corner detector on the image. Similarly to cornerMinEigenVal and
    .   cornerEigenValsAndVecs , for each pixel \f$(x, y)\f$ it calculates a \f$2\times2\f$ gradient covariance
    .   matrix \f$M^{(x,y)}\f$ over a \f$\texttt{blockSize} \times \texttt{blockSize}\f$ neighborhood. Then, it
    .   computes the following characteristic:
    .   
    .   \f[\texttt{dst} (x,y) =  \mathrm{det} M^{(x,y)} - k  \cdot \left ( \mathrm{tr} M^{(x,y)} \right )^2\f]
    .   
    .   Corners in the image can be found as the local maxima of this response map.
    .   
    .   @param src Input single-channel 8-bit or floating-point image.
    .   @param dst Image to store the Harris detector responses. It has the type CV_32FC1 and the same
    .   size as src .
    .   @param blockSize Neighborhood size (see the details on cornerEigenValsAndVecs ).
    .   @param ksize Aperture parameter for the Sobel operator.
    .   @param k Harris detector free parameter. See the formula below.
    .   @param borderType Pixel extrapolation method. See cv::BorderTypes.
    """
    pass

def cornerMinEigenVal(src, blockSize, dst=None, ksize=None, borderType=None): # real signature unknown; restored from __doc__
    """
    cornerMinEigenVal(src, blockSize[, dst[, ksize[, borderType]]]) -> dst
    .   @brief Calculates the minimal eigenvalue of gradient matrices for corner detection.
    .   
    .   The function is similar to cornerEigenValsAndVecs but it calculates and stores only the minimal
    .   eigenvalue of the covariance matrix of derivatives, that is, \f$\min(\lambda_1, \lambda_2)\f$ in terms
    .   of the formulae in the cornerEigenValsAndVecs description.
    .   
    .   @param src Input single-channel 8-bit or floating-point image.
    .   @param dst Image to store the minimal eigenvalues. It has the type CV_32FC1 and the same size as
    .   src .
    .   @param blockSize Neighborhood size (see the details on cornerEigenValsAndVecs ).
    .   @param ksize Aperture parameter for the Sobel operator.
    .   @param borderType Pixel extrapolation method. See cv::BorderTypes.
    """
    pass

def cornerSubPix(image, corners, winSize, zeroZone, criteria): # real signature unknown; restored from __doc__
    """
    cornerSubPix(image, corners, winSize, zeroZone, criteria) -> corners
    .   @brief Refines the corner locations.
    .   
    .   The function iterates to find the sub-pixel accurate location of corners or radial saddle points, as
    .   shown on the figure below.
    .   
    .   ![image](pics/cornersubpix.png)
    .   
    .   Sub-pixel accurate corner locator is based on the observation that every vector from the center \f$q\f$
    .   to a point \f$p\f$ located within a neighborhood of \f$q\f$ is orthogonal to the image gradient at \f$p\f$
    .   subject to image and measurement noise. Consider the expression:
    .   
    .   \f[\epsilon _i = {DI_{p_i}}^T  \cdot (q - p_i)\f]
    .   
    .   where \f${DI_{p_i}}\f$ is an image gradient at one of the points \f$p_i\f$ in a neighborhood of \f$q\f$ . The
    .   value of \f$q\f$ is to be found so that \f$\epsilon_i\f$ is minimized. A system of equations may be set up
    .   with \f$\epsilon_i\f$ set to zero:
    .   
    .   \f[\sum _i(DI_{p_i}  \cdot {DI_{p_i}}^T) -  \sum _i(DI_{p_i}  \cdot {DI_{p_i}}^T  \cdot p_i)\f]
    .   
    .   where the gradients are summed within a neighborhood ("search window") of \f$q\f$ . Calling the first
    .   gradient term \f$G\f$ and the second gradient term \f$b\f$ gives:
    .   
    .   \f[q = G^{-1}  \cdot b\f]
    .   
    .   The algorithm sets the center of the neighborhood window at this new center \f$q\f$ and then iterates
    .   until the center stays within a set threshold.
    .   
    .   @param image Input image.
    .   @param corners Initial coordinates of the input corners and refined coordinates provided for
    .   output.
    .   @param winSize Half of the side length of the search window. For example, if winSize=Size(5,5) ,
    .   then a \f$5*2+1 \times 5*2+1 = 11 \times 11\f$ search window is used.
    .   @param zeroZone Half of the size of the dead region in the middle of the search zone over which
    .   the summation in the formula below is not done. It is used sometimes to avoid possible
    .   singularities of the autocorrelation matrix. The value of (-1,-1) indicates that there is no such
    .   a size.
    .   @param criteria Criteria for termination of the iterative process of corner refinement. That is,
    .   the process of corner position refinement stops either after criteria.maxCount iterations or when
    .   the corner position moves by less than criteria.epsilon on some iteration.
    """
    pass

def correctMatches(F, points1, points2, newPoints1=None, newPoints2=None): # real signature unknown; restored from __doc__
    """
    correctMatches(F, points1, points2[, newPoints1[, newPoints2]]) -> newPoints1, newPoints2
    .   @brief Refines coordinates of corresponding points.
    .   
    .   @param F 3x3 fundamental matrix.
    .   @param points1 1xN array containing the first set of points.
    .   @param points2 1xN array containing the second set of points.
    .   @param newPoints1 The optimized points1.
    .   @param newPoints2 The optimized points2.
    .   
    .   The function implements the Optimal Triangulation Method (see Multiple View Geometry for details).
    .   For each given point correspondence points1[i] \<-\> points2[i], and a fundamental matrix F, it
    .   computes the corrected correspondences newPoints1[i] \<-\> newPoints2[i] that minimize the geometric
    .   error \f$d(points1[i], newPoints1[i])^2 + d(points2[i],newPoints2[i])^2\f$ (where \f$d(a,b)\f$ is the
    .   geometric distance between points \f$a\f$ and \f$b\f$ ) subject to the epipolar constraint
    .   \f$newPoints2^T * F * newPoints1 = 0\f$ .
    """
    pass

def countNonZero(src): # real signature unknown; restored from __doc__
    """
    countNonZero(src) -> retval
    .   @brief Counts non-zero array elements.
    .   
    .   The function returns the number of non-zero elements in src :
    .   \f[\sum _{I: \; \texttt{src} (I) \ne0 } 1\f]
    .   @param src single-channel array.
    .   @sa  mean, meanStdDev, norm, minMaxLoc, calcCovarMatrix
    """
    pass

def createAffineTransformer(fullAffine): # real signature unknown; restored from __doc__
    """
    createAffineTransformer(fullAffine) -> retval
    .   Complete constructor
    """
    pass

def createAlignMTB(max_bits=None, exclude_range=None, cut=None): # real signature unknown; restored from __doc__
    """
    createAlignMTB([, max_bits[, exclude_range[, cut]]]) -> retval
    .   @brief Creates AlignMTB object
    .   
    .   @param max_bits logarithm to the base 2 of maximal shift in each dimension. Values of 5 and 6 are
    .   usually good enough (31 and 63 pixels shift respectively).
    .   @param exclude_range range for exclusion bitmap that is constructed to suppress noise around the
    .   median value.
    .   @param cut if true cuts images, otherwise fills the new regions with zeros.
    """
    pass

def createBackgroundSubtractorKNN(history=None, dist2Threshold=None, detectShadows=None): # real signature unknown; restored from __doc__
    """
    createBackgroundSubtractorKNN([, history[, dist2Threshold[, detectShadows]]]) -> retval
    .   @brief Creates KNN Background Subtractor
    .   
    .   @param history Length of the history.
    .   @param dist2Threshold Threshold on the squared distance between the pixel and the sample to decide
    .   whether a pixel is close to that sample. This parameter does not affect the background update.
    .   @param detectShadows If true, the algorithm will detect shadows and mark them. It decreases the
    .   speed a bit, so if you do not need this feature, set the parameter to false.
    """
    pass

def createBackgroundSubtractorMOG2(history=None, varThreshold=None, detectShadows=None): # real signature unknown; restored from __doc__
    """
    createBackgroundSubtractorMOG2([, history[, varThreshold[, detectShadows]]]) -> retval
    .   @brief Creates MOG2 Background Subtractor
    .   
    .   @param history Length of the history.
    .   @param varThreshold Threshold on the squared Mahalanobis distance between the pixel and the model
    .   to decide whether a pixel is well described by the background model. This parameter does not
    .   affect the background update.
    .   @param detectShadows If true, the algorithm will detect shadows and mark them. It decreases the
    .   speed a bit, so if you do not need this feature, set the parameter to false.
    """
    pass

def createButton(buttonName, onChange, userData=None, buttonType=None, initialButtonState=None): # real signature unknown; restored from __doc__
    """ createButton(buttonName, onChange [, userData, buttonType, initialButtonState]) -> None """
    pass

def createCalibrateDebevec(samples=None, lambda=None, random=None): # real signature unknown; restored from __doc__
    """
    createCalibrateDebevec([, samples[, lambda[, random]]]) -> retval
    .   @brief Creates CalibrateDebevec object
    .   
    .   @param samples number of pixel locations to use
    .   @param lambda smoothness term weight. Greater values produce smoother results, but can alter the
    .   response.
    .   @param random if true sample pixel locations are chosen at random, otherwise they form a
    .   rectangular grid.
    """
    pass

def createCalibrateRobertson(max_iter=None, threshold=None): # real signature unknown; restored from __doc__
    """
    createCalibrateRobertson([, max_iter[, threshold]]) -> retval
    .   @brief Creates CalibrateRobertson object
    .   
    .   @param max_iter maximal number of Gauss-Seidel solver iterations.
    .   @param threshold target difference between results of two successive steps of the minimization.
    """
    pass

def createChiHistogramCostExtractor(nDummies=None, defaultCost=None): # real signature unknown; restored from __doc__
    """
    createChiHistogramCostExtractor([, nDummies[, defaultCost]]) -> retval
    .
    """
    pass

def createCLAHE(clipLimit=None, tileGridSize=None): # real signature unknown; restored from __doc__
    """
    createCLAHE([, clipLimit[, tileGridSize]]) -> retval
    .
    """
    pass

def createEMDHistogramCostExtractor(flag=None, nDummies=None, defaultCost=None): # real signature unknown; restored from __doc__
    """
    createEMDHistogramCostExtractor([, flag[, nDummies[, defaultCost]]]) -> retval
    .
    """
    pass

def createEMDL1HistogramCostExtractor(nDummies=None, defaultCost=None): # real signature unknown; restored from __doc__
    """
    createEMDL1HistogramCostExtractor([, nDummies[, defaultCost]]) -> retval
    .
    """
    pass

def createHanningWindow(winSize, type, dst=None): # real signature unknown; restored from __doc__
    """
    createHanningWindow(winSize, type[, dst]) -> dst
    .   @brief This function computes a Hanning window coefficients in two dimensions.
    .   
    .   See (http://en.wikipedia.org/wiki/Hann_function) and (http://en.wikipedia.org/wiki/Window_function)
    .   for more information.
    .   
    .   An example is shown below:
    .   @code
    .   // create hanning window of size 100x100 and type CV_32F
    .   Mat hann;
    .   createHanningWindow(hann, Size(100, 100), CV_32F);
    .   @endcode
    .   @param dst Destination array to place Hann coefficients in
    .   @param winSize The window size specifications
    .   @param type Created array type
    """
    pass

def createHausdorffDistanceExtractor(distanceFlag=None, rankProp=None): # real signature unknown; restored from __doc__
    """
    createHausdorffDistanceExtractor([, distanceFlag[, rankProp]]) -> retval
    .
    """
    pass

def createLineSegmentDetector(_refine=None, _scale=None, _sigma_scale=None, _quant=None, _ang_th=None, _log_eps=None, _density_th=None, _n_bins=None): # real signature unknown; restored from __doc__
    """
    createLineSegmentDetector([, _refine[, _scale[, _sigma_scale[, _quant[, _ang_th[, _log_eps[, _density_th[, _n_bins]]]]]]]]) -> retval
    .   @brief Creates a smart pointer to a LineSegmentDetector object and initializes it.
    .   
    .   The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want
    .   to edit those, as to tailor it for their own application.
    .   
    .   @param _refine The way found lines will be refined, see cv::LineSegmentDetectorModes
    .   @param _scale The scale of the image that will be used to find the lines. Range (0..1].
    .   @param _sigma_scale Sigma for Gaussian filter. It is computed as sigma = _sigma_scale/_scale.
    .   @param _quant Bound to the quantization error on the gradient norm.
    .   @param _ang_th Gradient angle tolerance in degrees.
    .   @param _log_eps Detection threshold: -log10(NFA) \> log_eps. Used only when advancent refinement
    .   is chosen.
    .   @param _density_th Minimal density of aligned region points in the enclosing rectangle.
    .   @param _n_bins Number of bins in pseudo-ordering of gradient modulus.
    """
    pass

def createMergeDebevec(): # real signature unknown; restored from __doc__
    """
    createMergeDebevec() -> retval
    .   @brief Creates MergeDebevec object
    """
    pass

def createMergeMertens(contrast_weight=None, saturation_weight=None, exposure_weight=None): # real signature unknown; restored from __doc__
    """
    createMergeMertens([, contrast_weight[, saturation_weight[, exposure_weight]]]) -> retval
    .   @brief Creates MergeMertens object
    .   
    .   @param contrast_weight contrast measure weight. See MergeMertens.
    .   @param saturation_weight saturation measure weight
    .   @param exposure_weight well-exposedness measure weight
    """
    pass

def createMergeRobertson(): # real signature unknown; restored from __doc__
    """
    createMergeRobertson() -> retval
    .   @brief Creates MergeRobertson object
    """
    pass

def createNormHistogramCostExtractor(flag=None, nDummies=None, defaultCost=None): # real signature unknown; restored from __doc__
    """
    createNormHistogramCostExtractor([, flag[, nDummies[, defaultCost]]]) -> retval
    .
    """
    pass

def createOptFlow_DualTVL1(): # real signature unknown; restored from __doc__
    """
    createOptFlow_DualTVL1() -> retval
    .   @brief Creates instance of cv::DenseOpticalFlow
    """
    pass

def createShapeContextDistanceExtractor(nAngularBins=None, nRadialBins=None, innerRadius=None, outerRadius=None, iterations=None, comparer=None, transformer=None): # real signature unknown; restored from __doc__
    """
    createShapeContextDistanceExtractor([, nAngularBins[, nRadialBins[, innerRadius[, outerRadius[, iterations[, comparer[, transformer]]]]]]]) -> retval
    .
    """
    pass

def createStitcher(try_use_gpu=None): # real signature unknown; restored from __doc__
    """
    createStitcher([, try_use_gpu]) -> retval
    .
    """
    pass

def createThinPlateSplineShapeTransformer(regularizationParameter=None): # real signature unknown; restored from __doc__
    """
    createThinPlateSplineShapeTransformer([, regularizationParameter]) -> retval
    .   Complete constructor
    """
    pass

def createTonemap(gamma=None): # real signature unknown; restored from __doc__
    """
    createTonemap([, gamma]) -> retval
    .   @brief Creates simple linear mapper with gamma correction
    .   
    .   @param gamma positive value for gamma correction. Gamma value of 1.0 implies no correction, gamma
    .   equal to 2.2f is suitable for most displays.
    .   Generally gamma \> 1 brightens the image and gamma \< 1 darkens it.
    """
    pass

def createTonemapDrago(gamma=None, saturation=None, bias=None): # real signature unknown; restored from __doc__
    """
    createTonemapDrago([, gamma[, saturation[, bias]]]) -> retval
    .   @brief Creates TonemapDrago object
    .   
    .   @param gamma gamma value for gamma correction. See createTonemap
    .   @param saturation positive saturation enhancement value. 1.0 preserves saturation, values greater
    .   than 1 increase saturation and values less than 1 decrease it.
    .   @param bias value for bias function in [0, 1] range. Values from 0.7 to 0.9 usually give best
    .   results, default value is 0.85.
    """
    pass

def createTonemapDurand(gamma=None, contrast=None, saturation=None, sigma_space=None, sigma_color=None): # real signature unknown; restored from __doc__
    """
    createTonemapDurand([, gamma[, contrast[, saturation[, sigma_space[, sigma_color]]]]]) -> retval
    .   @brief Creates TonemapDurand object
    .   
    .   @param gamma gamma value for gamma correction. See createTonemap
    .   @param contrast resulting contrast on logarithmic scale, i. e. log(max / min), where max and min
    .   are maximum and minimum luminance values of the resulting image.
    .   @param saturation saturation enhancement value. See createTonemapDrago
    .   @param sigma_space bilateral filter sigma in color space
    .   @param sigma_color bilateral filter sigma in coordinate space
    """
    pass

def createTonemapMantiuk(gamma=None, scale=None, saturation=None): # real signature unknown; restored from __doc__
    """
    createTonemapMantiuk([, gamma[, scale[, saturation]]]) -> retval
    .   @brief Creates TonemapMantiuk object
    .   
    .   @param gamma gamma value for gamma correction. See createTonemap
    .   @param scale contrast scale factor. HVS response is multiplied by this parameter, thus compressing
    .   dynamic range. Values from 0.6 to 0.9 produce best results.
    .   @param saturation saturation enhancement value. See createTonemapDrago
    """
    pass

def createTonemapReinhard(gamma=None, intensity=None, light_adapt=None, color_adapt=None): # real signature unknown; restored from __doc__
    """
    createTonemapReinhard([, gamma[, intensity[, light_adapt[, color_adapt]]]]) -> retval
    .   @brief Creates TonemapReinhard object
    .   
    .   @param gamma gamma value for gamma correction. See createTonemap
    .   @param intensity result intensity in [-8, 8] range. Greater intensity produces brighter results.
    .   @param light_adapt light adaptation in [0, 1] range. If 1 adaptation is based only on pixel
    .   value, if 0 it's global, otherwise it's a weighted mean of this two cases.
    .   @param color_adapt chromatic adaptation in [0, 1] range. If 1 channels are treated independently,
    .   if 0 adaptation level is the same for each channel.
    """
    pass

def createTrackbar(trackbarName, windowName, value, count, onChange): # real signature unknown; restored from __doc__
    """ createTrackbar(trackbarName, windowName, value, count, onChange) -> None """
    pass

def cubeRoot(val): # real signature unknown; restored from __doc__
    """
    cubeRoot(val) -> retval
    .   @brief Computes the cube root of an argument.
    .   
    .   The function cubeRoot computes \f$\sqrt[3]{\texttt{val}}\f$. Negative arguments are handled correctly.
    .   NaN and Inf are not handled. The accuracy approaches the maximum possible accuracy for
    .   single-precision data.
    .   @param val A function argument.
    """
    pass

def cvtColor(src, code, dst=None, dstCn=None): # real signature unknown; restored from __doc__
    """
    cvtColor(src, code[, dst[, dstCn]]) -> dst
    .   @brief Converts an image from one color space to another.
    .   
    .   The function converts an input image from one color space to another. In case of a transformation
    .   to-from RGB color space, the order of the channels should be specified explicitly (RGB or BGR). Note
    .   that the default color format in OpenCV is often referred to as RGB but it is actually BGR (the
    .   bytes are reversed). So the first byte in a standard (24-bit) color image will be an 8-bit Blue
    .   component, the second byte will be Green, and the third byte will be Red. The fourth, fifth, and
    .   sixth bytes would then be the second pixel (Blue, then Green, then Red), and so on.
    .   
    .   The conventional ranges for R, G, and B channel values are:
    .   -   0 to 255 for CV_8U images
    .   -   0 to 65535 for CV_16U images
    .   -   0 to 1 for CV_32F images
    .   
    .   In case of linear transformations, the range does not matter. But in case of a non-linear
    .   transformation, an input RGB image should be normalized to the proper value range to get the correct
    .   results, for example, for RGB \f$\rightarrow\f$ L\*u\*v\* transformation. For example, if you have a
    .   32-bit floating-point image directly converted from an 8-bit image without any scaling, then it will
    .   have the 0..255 value range instead of 0..1 assumed by the function. So, before calling cvtColor ,
    .   you need first to scale the image down:
    .   @code
    .   img *= 1./255;
    .   cvtColor(img, img, COLOR_BGR2Luv);
    .   @endcode
    .   If you use cvtColor with 8-bit images, the conversion will have some information lost. For many
    .   applications, this will not be noticeable but it is recommended to use 32-bit images in applications
    .   that need the full range of colors or that convert an image before an operation and then convert
    .   back.
    .   
    .   If conversion adds the alpha channel, its value will set to the maximum of corresponding channel
    .   range: 255 for CV_8U, 65535 for CV_16U, 1 for CV_32F.
    .   
    .   @param src input image: 8-bit unsigned, 16-bit unsigned ( CV_16UC... ), or single-precision
    .   floating-point.
    .   @param dst output image of the same size and depth as src.
    .   @param code color space conversion code (see cv::ColorConversionCodes).
    .   @param dstCn number of channels in the destination image; if the parameter is 0, the number of the
    .   channels is derived automatically from src and code.
    .   
    .   @see @ref imgproc_color_conversions
    """
    pass

def dct(src, dst=None, flags=None): # real signature unknown; restored from __doc__
    """
    dct(src[, dst[, flags]]) -> dst
    .   @brief Performs a forward or inverse discrete Cosine transform of 1D or 2D array.
    .   
    .   The function cv::dct performs a forward or inverse discrete Cosine transform (DCT) of a 1D or 2D
    .   floating-point array:
    .   -   Forward Cosine transform of a 1D vector of N elements:
    .   \f[Y = C^{(N)}  \cdot X\f]
    .   where
    .   \f[C^{(N)}_{jk}= \sqrt{\alpha_j/N} \cos \left ( \frac{\pi(2k+1)j}{2N} \right )\f]
    .   and
    .   \f$\alpha_0=1\f$, \f$\alpha_j=2\f$ for *j \> 0*.
    .   -   Inverse Cosine transform of a 1D vector of N elements:
    .   \f[X =  \left (C^{(N)} \right )^{-1}  \cdot Y =  \left (C^{(N)} \right )^T  \cdot Y\f]
    .   (since \f$C^{(N)}\f$ is an orthogonal matrix, \f$C^{(N)} \cdot \left(C^{(N)}\right)^T = I\f$ )
    .   -   Forward 2D Cosine transform of M x N matrix:
    .   \f[Y = C^{(N)}  \cdot X  \cdot \left (C^{(N)} \right )^T\f]
    .   -   Inverse 2D Cosine transform of M x N matrix:
    .   \f[X =  \left (C^{(N)} \right )^T  \cdot X  \cdot C^{(N)}\f]
    .   
    .   The function chooses the mode of operation by looking at the flags and size of the input array:
    .   -   If (flags & DCT_INVERSE) == 0 , the function does a forward 1D or 2D transform. Otherwise, it
    .   is an inverse 1D or 2D transform.
    .   -   If (flags & DCT_ROWS) != 0 , the function performs a 1D transform of each row.
    .   -   If the array is a single column or a single row, the function performs a 1D transform.
    .   -   If none of the above is true, the function performs a 2D transform.
    .   
    .   @note Currently dct supports even-size arrays (2, 4, 6 ...). For data analysis and approximation, you
    .   can pad the array when necessary.
    .   Also, the function performance depends very much, and not monotonically, on the array size (see
    .   getOptimalDFTSize ). In the current implementation DCT of a vector of size N is calculated via DFT
    .   of a vector of size N/2 . Thus, the optimal DCT size N1 \>= N can be calculated as:
    .   @code
    .   size_t getOptimalDCTSize(size_t N) { return 2*getOptimalDFTSize((N+1)/2); }
    .   N1 = getOptimalDCTSize(N);
    .   @endcode
    .   @param src input floating-point array.
    .   @param dst output array of the same size and type as src .
    .   @param flags transformation flags as a combination of cv::DftFlags (DCT_*)
    .   @sa dft , getOptimalDFTSize , idct
    """
    pass

def decolor(src, grayscale=None, color_boost=None): # real signature unknown; restored from __doc__
    """
    decolor(src[, grayscale[, color_boost]]) -> grayscale, color_boost
    .   @brief Transforms a color image to a grayscale image. It is a basic tool in digital printing, stylized
    .   black-and-white photograph rendering, and in many single channel image processing applications
    .   @cite CL12 .
    .   
    .   @param src Input 8-bit 3-channel image.
    .   @param grayscale Output 8-bit 1-channel image.
    .   @param color_boost Output 8-bit 3-channel image.
    .   
    .   This function is to be applied on color images.
    """
    pass

def decomposeEssentialMat(E, R1=None, R2=None, t=None): # real signature unknown; restored from __doc__
    """
    decomposeEssentialMat(E[, R1[, R2[, t]]]) -> R1, R2, t
    .   @brief Decompose an essential matrix to possible rotations and translation.
    .   
    .   @param E The input essential matrix.
    .   @param R1 One possible rotation matrix.
    .   @param R2 Another possible rotation matrix.
    .   @param t One possible translation.
    .   
    .   This function decompose an essential matrix E using svd decomposition @cite HartleyZ00 . Generally 4
    .   possible poses exists for a given E. They are \f$[R_1, t]\f$, \f$[R_1, -t]\f$, \f$[R_2, t]\f$, \f$[R_2, -t]\f$. By
    .   decomposing E, you can only get the direction of the translation, so the function returns unit t.
    """
    pass

def decomposeHomographyMat(H, K, rotations=None, translations=None, normals=None): # real signature unknown; restored from __doc__
    """
    decomposeHomographyMat(H, K[, rotations[, translations[, normals]]]) -> retval, rotations, translations, normals
    .   @brief Decompose a homography matrix to rotation(s), translation(s) and plane normal(s).
    .   
    .   @param H The input homography matrix between two images.
    .   @param K The input intrinsic camera calibration matrix.
    .   @param rotations Array of rotation matrices.
    .   @param translations Array of translation matrices.
    .   @param normals Array of plane normal matrices.
    .   
    .   This function extracts relative camera motion between two views observing a planar object from the
    .   homography H induced by the plane. The intrinsic camera matrix K must also be provided. The function
    .   may return up to four mathematical solution sets. At least two of the solutions may further be
    .   invalidated if point correspondences are available by applying positive depth constraint (all points
    .   must be in front of the camera). The decomposition method is described in detail in @cite Malis .
    """
    pass

def decomposeProjectionMatrix(projMatrix, cameraMatrix=None, rotMatrix=None, transVect=None, rotMatrixX=None, rotMatrixY=None, rotMatrixZ=None, eulerAngles=None): # real signature unknown; restored from __doc__
    """
    decomposeProjectionMatrix(projMatrix[, cameraMatrix[, rotMatrix[, transVect[, rotMatrixX[, rotMatrixY[, rotMatrixZ[, eulerAngles]]]]]]]) -> cameraMatrix, rotMatrix, transVect, rotMatrixX, rotMatrixY, rotMatrixZ, eulerAngles
    .   @brief Decomposes a projection matrix into a rotation matrix and a camera matrix.
    .   
    .   @param projMatrix 3x4 input projection matrix P.
    .   @param cameraMatrix Output 3x3 camera matrix K.
    .   @param rotMatrix Output 3x3 external rotation matrix R.
    .   @param transVect Output 4x1 translation vector T.
    .   @param rotMatrixX Optional 3x3 rotation matrix around x-axis.
    .   @param rotMatrixY Optional 3x3 rotation matrix around y-axis.
    .   @param rotMatrixZ Optional 3x3 rotation matrix around z-axis.
    .   @param eulerAngles Optional three-element vector containing three Euler angles of rotation in
    .   degrees.
    .   
    .   The function computes a decomposition of a projection matrix into a calibration and a rotation
    .   matrix and the position of a camera.
    .   
    .   It optionally returns three rotation matrices, one for each axis, and three Euler angles that could
    .   be used in OpenGL. Note, there is always more than one sequence of rotations about the three
    .   principal axes that results in the same orientation of an object, eg. see @cite Slabaugh . Returned
    .   tree rotation matrices and corresponding three Euler angules are only one of the possible solutions.
    .   
    .   The function is based on RQDecomp3x3 .
    """
    pass

def demosaicing(_src, code, _dst=None, dcn=None): # real signature unknown; restored from __doc__
    """
    demosaicing(_src, code[, _dst[, dcn]]) -> _dst
    .
    """
    pass

def denoise_TVL1(observations, result, lambda=None, niters=None): # real signature unknown; restored from __doc__
    """
    denoise_TVL1(observations, result[, lambda[, niters]]) -> None
    .   @brief Primal-dual algorithm is an algorithm for solving special types of variational problems (that is,
    .   finding a function to minimize some functional). As the image denoising, in particular, may be seen
    .   as the variational problem, primal-dual algorithm then can be used to perform denoising and this is
    .   exactly what is implemented.
    .   
    .   It should be noted, that this implementation was taken from the July 2013 blog entry
    .   @cite MA13 , which also contained (slightly more general) ready-to-use source code on Python.
    .   Subsequently, that code was rewritten on C++ with the usage of openCV by Vadim Pisarevsky at the end
    .   of July 2013 and finally it was slightly adapted by later authors.
    .   
    .   Although the thorough discussion and justification of the algorithm involved may be found in
    .   @cite ChambolleEtAl, it might make sense to skim over it here, following @cite MA13 . To begin
    .   with, we consider the 1-byte gray-level images as the functions from the rectangular domain of
    .   pixels (it may be seen as set
    .   \f$\left\{(x,y)\in\mathbb{N}\times\mathbb{N}\mid 1\leq x\leq n,\;1\leq y\leq m\right\}\f$ for some
    .   \f$m,\;n\in\mathbb{N}\f$) into \f$\{0,1,\dots,255\}\f$. We shall denote the noised images as \f$f_i\f$ and with
    .   this view, given some image \f$x\f$ of the same size, we may measure how bad it is by the formula
    .   
    .   \f[\left\|\left\|\nabla x\right\|\right\| + \lambda\sum_i\left\|\left\|x-f_i\right\|\right\|\f]
    .   
    .   \f$\|\|\cdot\|\|\f$ here denotes \f$L_2\f$-norm and as you see, the first addend states that we want our
    .   image to be smooth (ideally, having zero gradient, thus being constant) and the second states that
    .   we want our result to be close to the observations we've got. If we treat \f$x\f$ as a function, this is
    .   exactly the functional what we seek to minimize and here the Primal-Dual algorithm comes into play.
    .   
    .   @param observations This array should contain one or more noised versions of the image that is to
    .   be restored.
    .   @param result Here the denoised image will be stored. There is no need to do pre-allocation of
    .   storage space, as it will be automatically allocated, if necessary.
    .   @param lambda Corresponds to \f$\lambda\f$ in the formulas above. As it is enlarged, the smooth
    .   (blurred) images are treated more favorably than detailed (but maybe more noised) ones. Roughly
    .   speaking, as it becomes smaller, the result will be more blur but more sever outliers will be
    .   removed.
    .   @param niters Number of iterations that the algorithm will run. Of course, as more iterations as
    .   better, but it is hard to quantitatively refine this statement, so just use the default and
    .   increase it if the results are poor.
    """
    pass

def DescriptorMatcher_create(descriptorMatcherType): # real signature unknown; restored from __doc__
    """
    DescriptorMatcher_create(descriptorMatcherType) -> retval
    .   @brief Creates a descriptor matcher of a given type with the default parameters (using default
    .   constructor).
    .   
    .   @param descriptorMatcherType Descriptor matcher type. Now the following matcher types are
    .   supported:
    .   -   `BruteForce` (it uses L2 )
    .   -   `BruteForce-L1`
    .   -   `BruteForce-Hamming`
    .   -   `BruteForce-Hamming(2)`
    .   -   `FlannBased`
    
    
    
    DescriptorMatcher_create(matcherType) -> retval
    .
    """
    pass

def destroyAllWindows(): # real signature unknown; restored from __doc__
    """
    destroyAllWindows() -> None
    .   @brief Destroys all of the HighGUI windows.
    .   
    .   The function destroyAllWindows destroys all of the opened HighGUI windows.
    """
    pass

def destroyWindow(winname): # real signature unknown; restored from __doc__
    """
    destroyWindow(winname) -> None
    .   @brief Destroys the specified window.
    .   
    .   The function destroyWindow destroys the window with the given name.
    .   
    .   @param winname Name of the window to be destroyed.
    """
    pass

def detailEnhance(src, dst=None, sigma_s=None, sigma_r=None): # real signature unknown; restored from __doc__
    """
    detailEnhance(src[, dst[, sigma_s[, sigma_r]]]) -> dst
    .   @brief This filter enhances the details of a particular image.
    .   
    .   @param src Input 8-bit 3-channel image.
    .   @param dst Output image with the same size and type as src.
    .   @param sigma_s Range between 0 to 200.
    .   @param sigma_r Range between 0 to 1.
    """
    pass

def determinant(mtx): # real signature unknown; restored from __doc__
    """
    determinant(mtx) -> retval
    .   @brief Returns the determinant of a square floating-point matrix.
    .   
    .   The function cv::determinant calculates and returns the determinant of the
    .   specified matrix. For small matrices ( mtx.cols=mtx.rows\<=3 ), the
    .   direct method is used. For larger matrices, the function uses LU
    .   factorization with partial pivoting.
    .   
    .   For symmetric positively-determined matrices, it is also possible to use
    .   eigen decomposition to calculate the determinant.
    .   @param mtx input matrix that must have CV_32FC1 or CV_64FC1 type and
    .   square size.
    .   @sa trace, invert, solve, eigen, @ref MatrixExpressions
    """
    pass

def dft(src, dst=None, flags=None, nonzeroRows=None): # real signature unknown; restored from __doc__
    """
    dft(src[, dst[, flags[, nonzeroRows]]]) -> dst
    .   @brief Performs a forward or inverse Discrete Fourier transform of a 1D or 2D floating-point array.
    .   
    .   The function cv::dft performs one of the following:
    .   -   Forward the Fourier transform of a 1D vector of N elements:
    .   \f[Y = F^{(N)}  \cdot X,\f]
    .   where \f$F^{(N)}_{jk}=\exp(-2\pi i j k/N)\f$ and \f$i=\sqrt{-1}\f$
    .   -   Inverse the Fourier transform of a 1D vector of N elements:
    .   \f[\begin{array}{l} X'=  \left (F^{(N)} \right )^{-1}  \cdot Y =  \left (F^{(N)} \right )^*  \cdot y  \\ X = (1/N)  \cdot X, \end{array}\f]
    .   where \f$F^*=\left(\textrm{Re}(F^{(N)})-\textrm{Im}(F^{(N)})\right)^T\f$
    .   -   Forward the 2D Fourier transform of a M x N matrix:
    .   \f[Y = F^{(M)}  \cdot X  \cdot F^{(N)}\f]
    .   -   Inverse the 2D Fourier transform of a M x N matrix:
    .   \f[\begin{array}{l} X'=  \left (F^{(M)} \right )^*  \cdot Y  \cdot \left (F^{(N)} \right )^* \\ X =  \frac{1}{M \cdot N} \cdot X' \end{array}\f]
    .   
    .   In case of real (single-channel) data, the output spectrum of the forward Fourier transform or input
    .   spectrum of the inverse Fourier transform can be represented in a packed format called *CCS*
    .   (complex-conjugate-symmetrical). It was borrowed from IPL (Intel\* Image Processing Library). Here
    .   is how 2D *CCS* spectrum looks:
    .   \f[\begin{bmatrix} Re Y_{0,0} & Re Y_{0,1} & Im Y_{0,1} & Re Y_{0,2} & Im Y_{0,2} &  \cdots & Re Y_{0,N/2-1} & Im Y_{0,N/2-1} & Re Y_{0,N/2}  \\ Re Y_{1,0} & Re Y_{1,1} & Im Y_{1,1} & Re Y_{1,2} & Im Y_{1,2} &  \cdots & Re Y_{1,N/2-1} & Im Y_{1,N/2-1} & Re Y_{1,N/2}  \\ Im Y_{1,0} & Re Y_{2,1} & Im Y_{2,1} & Re Y_{2,2} & Im Y_{2,2} &  \cdots & Re Y_{2,N/2-1} & Im Y_{2,N/2-1} & Im Y_{1,N/2}  \\ \hdotsfor{9} \\ Re Y_{M/2-1,0} &  Re Y_{M-3,1}  & Im Y_{M-3,1} &  \hdotsfor{3} & Re Y_{M-3,N/2-1} & Im Y_{M-3,N/2-1}& Re Y_{M/2-1,N/2}  \\ Im Y_{M/2-1,0} &  Re Y_{M-2,1}  & Im Y_{M-2,1} &  \hdotsfor{3} & Re Y_{M-2,N/2-1} & Im Y_{M-2,N/2-1}& Im Y_{M/2-1,N/2}  \\ Re Y_{M/2,0}  &  Re Y_{M-1,1} &  Im Y_{M-1,1} &  \hdotsfor{3} & Re Y_{M-1,N/2-1} & Im Y_{M-1,N/2-1}& Re Y_{M/2,N/2} \end{bmatrix}\f]
    .   
    .   In case of 1D transform of a real vector, the output looks like the first row of the matrix above.
    .   
    .   So, the function chooses an operation mode depending on the flags and size of the input array:
    .   -   If DFT_ROWS is set or the input array has a single row or single column, the function
    .   performs a 1D forward or inverse transform of each row of a matrix when DFT_ROWS is set.
    .   Otherwise, it performs a 2D transform.
    .   -   If the input array is real and DFT_INVERSE is not set, the function performs a forward 1D or
    .   2D transform:
    .   -   When DFT_COMPLEX_OUTPUT is set, the output is a complex matrix of the same size as
    .   input.
    .   -   When DFT_COMPLEX_OUTPUT is not set, the output is a real matrix of the same size as
    .   input. In case of 2D transform, it uses the packed format as shown above. In case of a
    .   single 1D transform, it looks like the first row of the matrix above. In case of
    .   multiple 1D transforms (when using the DFT_ROWS flag), each row of the output matrix
    .   looks like the first row of the matrix above.
    .   -   If the input array is complex and either DFT_INVERSE or DFT_REAL_OUTPUT are not set, the
    .   output is a complex array of the same size as input. The function performs a forward or
    .   inverse 1D or 2D transform of the whole input array or each row of the input array
    .   independently, depending on the flags DFT_INVERSE and DFT_ROWS.
    .   -   When DFT_INVERSE is set and the input array is real, or it is complex but DFT_REAL_OUTPUT
    .   is set, the output is a real array of the same size as input. The function performs a 1D or 2D
    .   inverse transformation of the whole input array or each individual row, depending on the flags
    .   DFT_INVERSE and DFT_ROWS.
    .   
    .   If DFT_SCALE is set, the scaling is done after the transformation.
    .   
    .   Unlike dct , the function supports arrays of arbitrary size. But only those arrays are processed
    .   efficiently, whose sizes can be factorized in a product of small prime numbers (2, 3, and 5 in the
    .   current implementation). Such an efficient DFT size can be calculated using the getOptimalDFTSize
    .   method.
    .   
    .   The sample below illustrates how to calculate a DFT-based convolution of two 2D real arrays:
    .   @code
    .   void convolveDFT(InputArray A, InputArray B, OutputArray C)
    .   {
    .   // reallocate the output array if needed
    .   C.create(abs(A.rows - B.rows)+1, abs(A.cols - B.cols)+1, A.type());
    .   Size dftSize;
    .   // calculate the size of DFT transform
    .   dftSize.width = getOptimalDFTSize(A.cols + B.cols - 1);
    .   dftSize.height = getOptimalDFTSize(A.rows + B.rows - 1);
    .   
    .   // allocate temporary buffers and initialize them with 0's
    .   Mat tempA(dftSize, A.type(), Scalar::all(0));
    .   Mat tempB(dftSize, B.type(), Scalar::all(0));
    .   
    .   // copy A and B to the top-left corners of tempA and tempB, respectively
    .   Mat roiA(tempA, Rect(0,0,A.cols,A.rows));
    .   A.copyTo(roiA);
    .   Mat roiB(tempB, Rect(0,0,B.cols,B.rows));
    .   B.copyTo(roiB);
    .   
    .   // now transform the padded A & B in-place;
    .   // use "nonzeroRows" hint for faster processing
    .   dft(tempA, tempA, 0, A.rows);
    .   dft(tempB, tempB, 0, B.rows);
    .   
    .   // multiply the spectrums;
    .   // the function handles packed spectrum representations well
    .   mulSpectrums(tempA, tempB, tempA);
    .   
    .   // transform the product back from the frequency domain.
    .   // Even though all the result rows will be non-zero,
    .   // you need only the first C.rows of them, and thus you
    .   // pass nonzeroRows == C.rows
    .   dft(tempA, tempA, DFT_INVERSE + DFT_SCALE, C.rows);
    .   
    .   // now copy the result back to C.
    .   tempA(Rect(0, 0, C.cols, C.rows)).copyTo(C);
    .   
    .   // all the temporary buffers will be deallocated automatically
    .   }
    .   @endcode
    .   To optimize this sample, consider the following approaches:
    .   -   Since nonzeroRows != 0 is passed to the forward transform calls and since A and B are copied to
    .   the top-left corners of tempA and tempB, respectively, it is not necessary to clear the whole
    .   tempA and tempB. It is only necessary to clear the tempA.cols - A.cols ( tempB.cols - B.cols)
    .   rightmost columns of the matrices.
    .   -   This DFT-based convolution does not have to be applied to the whole big arrays, especially if B
    .   is significantly smaller than A or vice versa. Instead, you can calculate convolution by parts.
    .   To do this, you need to split the output array C into multiple tiles. For each tile, estimate
    .   which parts of A and B are required to calculate convolution in this tile. If the tiles in C are
    .   too small, the speed will decrease a lot because of repeated work. In the ultimate case, when
    .   each tile in C is a single pixel, the algorithm becomes equivalent to the naive convolution
    .   algorithm. If the tiles are too big, the temporary arrays tempA and tempB become too big and
    .   there is also a slowdown because of bad cache locality. So, there is an optimal tile size
    .   somewhere in the middle.
    .   -   If different tiles in C can be calculated in parallel and, thus, the convolution is done by
    .   parts, the loop can be threaded.
    .   
    .   All of the above improvements have been implemented in matchTemplate and filter2D . Therefore, by
    .   using them, you can get the performance even better than with the above theoretically optimal
    .   implementation. Though, those two functions actually calculate cross-correlation, not convolution,
    .   so you need to "flip" the second convolution operand B vertically and horizontally using flip .
    .   @note
    .   -   An example using the discrete fourier transform can be found at
    .   opencv_source_code/samples/cpp/dft.cpp
    .   -   (Python) An example using the dft functionality to perform Wiener deconvolution can be found
    .   at opencv_source/samples/python/deconvolution.py
    .   -   (Python) An example rearranging the quadrants of a Fourier image can be found at
    .   opencv_source/samples/python/dft.py
    .   @param src input array that could be real or complex.
    .   @param dst output array whose size and type depends on the flags .
    .   @param flags transformation flags, representing a combination of the cv::DftFlags
    .   @param nonzeroRows when the parameter is not zero, the function assumes that only the first
    .   nonzeroRows rows of the input array (DFT_INVERSE is not set) or only the first nonzeroRows of the
    .   output array (DFT_INVERSE is set) contain non-zeros, thus, the function can handle the rest of the
    .   rows more efficiently and save some time; this technique is very useful for calculating array
    .   cross-correlation or convolution using DFT.
    .   @sa dct , getOptimalDFTSize , mulSpectrums, filter2D , matchTemplate , flip , cartToPolar ,
    .   magnitude , phase
    """
    pass

def dilate(src, kernel, dst=None, anchor=None, iterations=None, borderType=None, borderValue=None): # real signature unknown; restored from __doc__
    """
    dilate(src, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) -> dst
    .   @brief Dilates an image by using a specific structuring element.
    .   
    .   The function dilates the source image using the specified structuring element that determines the
    .   shape of a pixel neighborhood over which the maximum is taken:
    .   \f[\texttt{dst} (x,y) =  \max _{(x',y'):  \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\f]
    .   
    .   The function supports the in-place mode. Dilation can be applied several ( iterations ) times. In
    .   case of multi-channel images, each channel is processed independently.
    .   
    .   @param src input image; the number of channels can be arbitrary, but the depth should be one of
    .   CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
    .   @param dst output image of the same size and type as src\`.
    .   @param kernel structuring element used for dilation; if elemenat=Mat(), a 3 x 3 rectangular
    .   structuring element is used. Kernel can be created using getStructuringElement
    .   @param anchor position of the anchor within the element; default value (-1, -1) means that the
    .   anchor is at the element center.
    .   @param iterations number of times dilation is applied.
    .   @param borderType pixel extrapolation method, see cv::BorderTypes
    .   @param borderValue border value in case of a constant border
    .   @sa  erode, morphologyEx, getStructuringElement
    """
    pass

def displayOverlay(winname, text, delayms=None): # real signature unknown; restored from __doc__
    """
    displayOverlay(winname, text[, delayms]) -> None
    .   @brief Displays a text on a window image as an overlay for a specified duration.
    .   
    .   The function displayOverlay displays useful information/tips on top of the window for a certain
    .   amount of time *delayms*. The function does not modify the image, displayed in the window, that is,
    .   after the specified delay the original content of the window is restored.
    .   
    .   @param winname Name of the window.
    .   @param text Overlay text to write on a window image.
    .   @param delayms The period (in milliseconds), during which the overlay text is displayed. If this
    .   function is called before the previous overlay text timed out, the timer is restarted and the text
    .   is updated. If this value is zero, the text never disappears.
    """
    pass

def displayStatusBar(winname, text, delayms=None): # real signature unknown; restored from __doc__
    """
    displayStatusBar(winname, text[, delayms]) -> None
    .   @brief Displays a text on the window statusbar during the specified period of time.
    .   
    .   The function displayStatusBar displays useful information/tips on top of the window for a certain
    .   amount of time *delayms* . This information is displayed on the window statusbar (the window must be
    .   created with the CV_GUI_EXPANDED flags).
    .   
    .   @param winname Name of the window.
    .   @param text Text to write on the window statusbar.
    .   @param delayms Duration (in milliseconds) to display the text. If this function is called before
    .   the previous text timed out, the timer is restarted and the text is updated. If this value is
    .   zero, the text never disappears.
    """
    pass

def distanceTransform(src, distanceType, maskSize, dst=None, dstType=None): # real signature unknown; restored from __doc__
    """
    distanceTransform(src, distanceType, maskSize[, dst[, dstType]]) -> dst
    .   @overload
    .   @param src 8-bit, single-channel (binary) source image.
    .   @param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point,
    .   single-channel image of the same size as src .
    .   @param distanceType Type of distance, see cv::DistanceTypes
    .   @param maskSize Size of the distance transform mask, see cv::DistanceTransformMasks. In case of the
    .   DIST_L1 or DIST_C distance type, the parameter is forced to 3 because a \f$3\times 3\f$ mask gives
    .   the same result as \f$5\times 5\f$ or any larger aperture.
    .   @param dstType Type of output image. It can be CV_8U or CV_32F. Type CV_8U can be used only for
    .   the first variant of the function and distanceType == DIST_L1.
    """
    pass

def distanceTransformWithLabels(src, distanceType, maskSize, dst=None, labels=None, labelType=None): # real signature unknown; restored from __doc__
    """
    distanceTransformWithLabels(src, distanceType, maskSize[, dst[, labels[, labelType]]]) -> dst, labels
    .   @brief Calculates the distance to the closest zero pixel for each pixel of the source image.
    .   
    .   The function cv::distanceTransform calculates the approximate or precise distance from every binary
    .   image pixel to the nearest zero pixel. For zero image pixels, the distance will obviously be zero.
    .   
    .   When maskSize == DIST_MASK_PRECISE and distanceType == DIST_L2 , the function runs the
    .   algorithm described in @cite Felzenszwalb04 . This algorithm is parallelized with the TBB library.
    .   
    .   In other cases, the algorithm @cite Borgefors86 is used. This means that for a pixel the function
    .   finds the shortest path to the nearest zero pixel consisting of basic shifts: horizontal, vertical,
    .   diagonal, or knight's move (the latest is available for a \f$5\times 5\f$ mask). The overall
    .   distance is calculated as a sum of these basic distances. Since the distance function should be
    .   symmetric, all of the horizontal and vertical shifts must have the same cost (denoted as a ), all
    .   the diagonal shifts must have the same cost (denoted as `b`), and all knight's moves must have the
    .   same cost (denoted as `c`). For the cv::DIST_C and cv::DIST_L1 types, the distance is calculated
    .   precisely, whereas for cv::DIST_L2 (Euclidean distance) the distance can be calculated only with a
    .   relative error (a \f$5\times 5\f$ mask gives more accurate results). For `a`,`b`, and `c`, OpenCV
    .   uses the values suggested in the original paper:
    .   - DIST_L1: `a = 1, b = 2`
    .   - DIST_L2:
    .   - `3 x 3`: `a=0.955, b=1.3693`
    .   - `5 x 5`: `a=1, b=1.4, c=2.1969`
    .   - DIST_C: `a = 1, b = 1`
    .   
    .   Typically, for a fast, coarse distance estimation DIST_L2, a \f$3\times 3\f$ mask is used. For a
    .   more accurate distance estimation DIST_L2, a \f$5\times 5\f$ mask or the precise algorithm is used.
    .   Note that both the precise and the approximate algorithms are linear on the number of pixels.
    .   
    .   This variant of the function does not only compute the minimum distance for each pixel \f$(x, y)\f$
    .   but also identifies the nearest connected component consisting of zero pixels
    .   (labelType==DIST_LABEL_CCOMP) or the nearest zero pixel (labelType==DIST_LABEL_PIXEL). Index of the
    .   component/pixel is stored in `labels(x, y)`. When labelType==DIST_LABEL_CCOMP, the function
    .   automatically finds connected components of zero pixels in the input image and marks them with
    .   distinct labels. When labelType==DIST_LABEL_CCOMP, the function scans through the input image and
    .   marks all the zero pixels with distinct labels.
    .   
    .   In this mode, the complexity is still linear. That is, the function provides a very fast way to
    .   compute the Voronoi diagram for a binary image. Currently, the second variant can use only the
    .   approximate distance transform algorithm, i.e. maskSize=DIST_MASK_PRECISE is not supported
    .   yet.
    .   
    .   @param src 8-bit, single-channel (binary) source image.
    .   @param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point,
    .   single-channel image of the same size as src.
    .   @param labels Output 2D array of labels (the discrete Voronoi diagram). It has the type
    .   CV_32SC1 and the same size as src.
    .   @param distanceType Type of distance, see cv::DistanceTypes
    .   @param maskSize Size of the distance transform mask, see cv::DistanceTransformMasks.
    .   DIST_MASK_PRECISE is not supported by this variant. In case of the DIST_L1 or DIST_C distance type,
    .   the parameter is forced to 3 because a \f$3\times 3\f$ mask gives the same result as \f$5\times
    .   5\f$ or any larger aperture.
    .   @param labelType Type of the label array to build, see cv::DistanceTransformLabelTypes.
    """
    pass

def divide(src1, src2, dst=None, scale=None, dtype=None): # real signature unknown; restored from __doc__
    """
    divide(src1, src2[, dst[, scale[, dtype]]]) -> dst
    .   @brief Performs per-element division of two arrays or a scalar by an array.
    .   
    .   The function cv::divide divides one array by another:
    .   \f[\texttt{dst(I) = saturate(src1(I)*scale/src2(I))}\f]
    .   or a scalar by an array when there is no src1 :
    .   \f[\texttt{dst(I) = saturate(scale/src2(I))}\f]
    .   
    .   When src2(I) is zero, dst(I) will also be zero. Different channels of
    .   multi-channel arrays are processed independently.
    .   
    .   @note Saturation is not applied when the output array has the depth CV_32S. You may even get
    .   result of an incorrect sign in the case of overflow.
    .   @param src1 first input array.
    .   @param src2 second input array of the same size and type as src1.
    .   @param scale scalar factor.
    .   @param dst output array of the same size and type as src2.
    .   @param dtype optional depth of the output array; if -1, dst will have depth src2.depth(), but in
    .   case of an array-by-array division, you can only pass -1 when src1.depth()==src2.depth().
    .   @sa  multiply, add, subtract
    
    
    
    divide(scale, src2[, dst[, dtype]]) -> dst
    .   @overload
    """
    pass

def DMatch(): # real signature unknown; restored from __doc__
    """
    DMatch() -> <DMatch object>
    .   
    
    
    
    DMatch(_queryIdx, _trainIdx, _distance) -> <DMatch object>
    .   
    
    
    
    DMatch(_queryIdx, _trainIdx, _imgIdx, _distance) -> <DMatch object>
    .
    """
    pass

def drawChessboardCorners(image, patternSize, corners, patternWasFound): # real signature unknown; restored from __doc__
    """
    drawChessboardCorners(image, patternSize, corners, patternWasFound) -> image
    .   @brief Renders the detected chessboard corners.
    .   
    .   @param image Destination image. It must be an 8-bit color image.
    .   @param patternSize Number of inner corners per a chessboard row and column
    .   (patternSize = cv::Size(points_per_row,points_per_column)).
    .   @param corners Array of detected corners, the output of findChessboardCorners.
    .   @param patternWasFound Parameter indicating whether the complete board was found or not. The
    .   return value of findChessboardCorners should be passed here.
    .   
    .   The function draws individual chessboard corners detected either as red circles if the board was not
    .   found, or as colored corners connected with lines if the board was found.
    """
    pass

def drawContours(image, contours, contourIdx, color, thickness=None, lineType=None, hierarchy=None, maxLevel=None, offset=None): # real signature unknown; restored from __doc__
    """
    drawContours(image, contours, contourIdx, color[, thickness[, lineType[, hierarchy[, maxLevel[, offset]]]]]) -> image
    .   @brief Draws contours outlines or filled contours.
    .   
    .   The function draws contour outlines in the image if \f$\texttt{thickness} \ge 0\f$ or fills the area
    .   bounded by the contours if \f$\texttt{thickness}<0\f$ . The example below shows how to retrieve
    .   connected components from the binary image and label them: :
    .   @code
    .   #include "opencv2/imgproc.hpp"
    .   #include "opencv2/highgui.hpp"
    .   
    .   using namespace cv;
    .   using namespace std;
    .   
    .   int main( int argc, char** argv )
    .   {
    .   Mat src;
    .   // the first command-line parameter must be a filename of the binary
    .   // (black-n-white) image
    .   if( argc != 2 || !(src=imread(argv[1], 0)).data)
    .   return -1;
    .   
    .   Mat dst = Mat::zeros(src.rows, src.cols, CV_8UC3);
    .   
    .   src = src > 1;
    .   namedWindow( "Source", 1 );
    .   imshow( "Source", src );
    .   
    .   vector<vector<Point> > contours;
    .   vector<Vec4i> hierarchy;
    .   
    .   findContours( src, contours, hierarchy,
    .   RETR_CCOMP, CHAIN_APPROX_SIMPLE );
    .   
    .   // iterate through all the top-level contours,
    .   // draw each connected component with its own random color
    .   int idx = 0;
    .   for( ; idx >= 0; idx = hierarchy[idx][0] )
    .   {
    .   Scalar color( rand()&255, rand()&255, rand()&255 );
    .   drawContours( dst, contours, idx, color, FILLED, 8, hierarchy );
    .   }
    .   
    .   namedWindow( "Components", 1 );
    .   imshow( "Components", dst );
    .   waitKey(0);
    .   }
    .   @endcode
    .   
    .   @param image Destination image.
    .   @param contours All the input contours. Each contour is stored as a point vector.
    .   @param contourIdx Parameter indicating a contour to draw. If it is negative, all the contours are drawn.
    .   @param color Color of the contours.
    .   @param thickness Thickness of lines the contours are drawn with. If it is negative (for example,
    .   thickness=CV_FILLED ), the contour interiors are drawn.
    .   @param lineType Line connectivity. See cv::LineTypes.
    .   @param hierarchy Optional information about hierarchy. It is only needed if you want to draw only
    .   some of the contours (see maxLevel ).
    .   @param maxLevel Maximal level for drawn contours. If it is 0, only the specified contour is drawn.
    .   If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function
    .   draws the contours, all the nested contours, all the nested-to-nested contours, and so on. This
    .   parameter is only taken into account when there is hierarchy available.
    .   @param offset Optional contour shift parameter. Shift all the drawn contours by the specified
    .   \f$\texttt{offset}=(dx,dy)\f$ .
    """
    pass

def drawKeypoints(image, keypoints, outImage, color=None, flags=None): # real signature unknown; restored from __doc__
    """
    drawKeypoints(image, keypoints, outImage[, color[, flags]]) -> outImage
    .   @brief Draws keypoints.
    .   
    .   @param image Source image.
    .   @param keypoints Keypoints from the source image.
    .   @param outImage Output image. Its content depends on the flags value defining what is drawn in the
    .   output image. See possible flags bit values below.
    .   @param color Color of keypoints.
    .   @param flags Flags setting drawing features. Possible flags bit values are defined by
    .   DrawMatchesFlags. See details above in drawMatches .
    .   
    .   @note
    .   For Python API, flags are modified as cv2.DRAW_MATCHES_FLAGS_DEFAULT,
    .   cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS, cv2.DRAW_MATCHES_FLAGS_DRAW_OVER_OUTIMG,
    .   cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS
    """
    pass

def drawMarker(img, position, color, markerType=None, markerSize=None, thickness=None, line_type=None): # real signature unknown; restored from __doc__
    """
    drawMarker(img, position, color[, markerType[, markerSize[, thickness[, line_type]]]]) -> img
    .   @brief Draws a marker on a predefined position in an image.
    .   
    .   The function drawMarker draws a marker on a given position in the image. For the moment several
    .   marker types are supported, see cv::MarkerTypes for more information.
    .   
    .   @param img Image.
    .   @param position The point where the crosshair is positioned.
    .   @param color Line color.
    .   @param markerType The specific type of marker you want to use, see cv::MarkerTypes
    .   @param thickness Line thickness.
    .   @param line_type Type of the line, see cv::LineTypes
    .   @param markerSize The length of the marker axis [default = 20 pixels]
    """
    pass

def drawMatches(img1, keypoints1, img2, keypoints2, matches1to2, outImg, matchColor=None, singlePointColor=None, matchesMask=None, flags=None): # real signature unknown; restored from __doc__
    """
    drawMatches(img1, keypoints1, img2, keypoints2, matches1to2, outImg[, matchColor[, singlePointColor[, matchesMask[, flags]]]]) -> outImg
    .   @brief Draws the found matches of keypoints from two images.
    .   
    .   @param img1 First source image.
    .   @param keypoints1 Keypoints from the first source image.
    .   @param img2 Second source image.
    .   @param keypoints2 Keypoints from the second source image.
    .   @param matches1to2 Matches from the first image to the second one, which means that keypoints1[i]
    .   has a corresponding point in keypoints2[matches[i]] .
    .   @param outImg Output image. Its content depends on the flags value defining what is drawn in the
    .   output image. See possible flags bit values below.
    .   @param matchColor Color of matches (lines and connected keypoints). If matchColor==Scalar::all(-1)
    .   , the color is generated randomly.
    .   @param singlePointColor Color of single keypoints (circles), which means that keypoints do not
    .   have the matches. If singlePointColor==Scalar::all(-1) , the color is generated randomly.
    .   @param matchesMask Mask determining which matches are drawn. If the mask is empty, all matches are
    .   drawn.
    .   @param flags Flags setting drawing features. Possible flags bit values are defined by
    .   DrawMatchesFlags.
    .   
    .   This function draws matches of keypoints from two images in the output image. Match is a line
    .   connecting two keypoints (circles). See cv::DrawMatchesFlags.
    """
    pass

def drawMatchesKnn(img1, keypoints1, img2, keypoints2, matches1to2, outImg, matchColor=None, singlePointColor=None, matchesMask=None, flags=None): # real signature unknown; restored from __doc__
    """
    drawMatchesKnn(img1, keypoints1, img2, keypoints2, matches1to2, outImg[, matchColor[, singlePointColor[, matchesMask[, flags]]]]) -> outImg
    .   @overload
    """
    pass

def DualTVL1OpticalFlow_create(tau=None, lambda=None, theta=None, nscales=None, warps=None, epsilon=None, innnerIterations=None, outerIterations=None, scaleStep=None, gamma=None, medianFiltering=None, useInitialFlow=None): # real signature unknown; restored from __doc__
    """
    DualTVL1OpticalFlow_create([, tau[, lambda[, theta[, nscales[, warps[, epsilon[, innnerIterations[, outerIterations[, scaleStep[, gamma[, medianFiltering[, useInitialFlow]]]]]]]]]]]]) -> retval
    .   @brief Creates instance of cv::DualTVL1OpticalFlow
    """
    pass

def edgePreservingFilter(src, dst=None, flags=None, sigma_s=None, sigma_r=None): # real signature unknown; restored from __doc__
    """
    edgePreservingFilter(src[, dst[, flags[, sigma_s[, sigma_r]]]]) -> dst
    .   @brief Filtering is the fundamental operation in image and video processing. Edge-preserving smoothing
    .   filters are used in many different applications @cite EM11 .
    .   
    .   @param src Input 8-bit 3-channel image.
    .   @param dst Output 8-bit 3-channel image.
    .   @param flags Edge preserving filters:
    .   -   **RECURS_FILTER** = 1
    .   -   **NORMCONV_FILTER** = 2
    .   @param sigma_s Range between 0 to 200.
    .   @param sigma_r Range between 0 to 1.
    """
    pass

def eigen(src, eigenvalues=None, eigenvectors=None): # real signature unknown; restored from __doc__
    """
    eigen(src[, eigenvalues[, eigenvectors]]) -> retval, eigenvalues, eigenvectors
    .   @brief Calculates eigenvalues and eigenvectors of a symmetric matrix.
    .   
    .   The function cv::eigen calculates just eigenvalues, or eigenvalues and eigenvectors of the symmetric
    .   matrix src:
    .   @code
    .   src*eigenvectors.row(i).t() = eigenvalues.at<srcType>(i)*eigenvectors.row(i).t()
    .   @endcode
    .   @note in the new and the old interfaces different ordering of eigenvalues and eigenvectors
    .   parameters is used.
    .   @param src input matrix that must have CV_32FC1 or CV_64FC1 type, square size and be symmetrical
    .   (src ^T^ == src).
    .   @param eigenvalues output vector of eigenvalues of the same type as src; the eigenvalues are stored
    .   in the descending order.
    .   @param eigenvectors output matrix of eigenvectors; it has the same size and type as src; the
    .   eigenvectors are stored as subsequent matrix rows, in the same order as the corresponding
    .   eigenvalues.
    .   @sa completeSymm , PCA
    """
    pass

def ellipse(img, center, axes, angle, startAngle, endAngle, color, thickness=None, lineType=None, shift=None): # real signature unknown; restored from __doc__
    """
    ellipse(img, center, axes, angle, startAngle, endAngle, color[, thickness[, lineType[, shift]]]) -> img
    .   @brief Draws a simple or thick elliptic arc or fills an ellipse sector.
    .   
    .   The function cv::ellipse with more parameters draws an ellipse outline, a filled ellipse, an elliptic
    .   arc, or a filled ellipse sector. The drawing code uses general parametric form.
    .   A piecewise-linear curve is used to approximate the elliptic arc
    .   boundary. If you need more control of the ellipse rendering, you can retrieve the curve using
    .   cv::ellipse2Poly and then render it with polylines or fill it with cv::fillPoly. If you use the first
    .   variant of the function and want to draw the whole ellipse, not an arc, pass `startAngle=0` and
    .   `endAngle=360`. If `startAngle` is greater than `endAngle`, they are swapped. The figure below explains
    .   the meaning of the parameters to draw the blue arc.
    .   
    .   ![Parameters of Elliptic Arc](pics/ellipse.svg)
    .   
    .   @param img Image.
    .   @param center Center of the ellipse.
    .   @param axes Half of the size of the ellipse main axes.
    .   @param angle Ellipse rotation angle in degrees.
    .   @param startAngle Starting angle of the elliptic arc in degrees.
    .   @param endAngle Ending angle of the elliptic arc in degrees.
    .   @param color Ellipse color.
    .   @param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that
    .   a filled ellipse sector is to be drawn.
    .   @param lineType Type of the ellipse boundary. See the line description.
    .   @param shift Number of fractional bits in the coordinates of the center and values of axes.
    
    
    
    ellipse(img, box, color[, thickness[, lineType]]) -> img
    .   @overload
    .   @param img Image.
    .   @param box Alternative ellipse representation via RotatedRect. This means that the function draws
    .   an ellipse inscribed in the rotated rectangle.
    .   @param color Ellipse color.
    .   @param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that
    .   a filled ellipse sector is to be drawn.
    .   @param lineType Type of the ellipse boundary. See the line description.
    """
    pass

def ellipse2Poly(center, axes, angle, arcStart, arcEnd, delta): # real signature unknown; restored from __doc__
    """
    ellipse2Poly(center, axes, angle, arcStart, arcEnd, delta) -> pts
    .   @brief Approximates an elliptic arc with a polyline.
    .   
    .   The function ellipse2Poly computes the vertices of a polyline that approximates the specified
    .   elliptic arc. It is used by cv::ellipse. If `arcStart` is greater than `arcEnd`, they are swapped.
    .   
    .   @param center Center of the arc.
    .   @param axes Half of the size of the ellipse main axes. See the ellipse for details.
    .   @param angle Rotation angle of the ellipse in degrees. See the ellipse for details.
    .   @param arcStart Starting angle of the elliptic arc in degrees.
    .   @param arcEnd Ending angle of the elliptic arc in degrees.
    .   @param delta Angle between the subsequent polyline vertices. It defines the approximation
    .   accuracy.
    .   @param pts Output vector of polyline vertices.
    """
    pass

def EMD(signature1, signature2, distType, cost=None, lowerBound=None, flow=None): # real signature unknown; restored from __doc__
    """
    EMD(signature1, signature2, distType[, cost[, lowerBound[, flow]]]) -> retval, lowerBound, flow
    .   @brief Computes the "minimal work" distance between two weighted point configurations.
    .   
    .   The function computes the earth mover distance and/or a lower boundary of the distance between the
    .   two weighted point configurations. One of the applications described in @cite RubnerSept98,
    .   @cite Rubner2000 is multi-dimensional histogram comparison for image retrieval. EMD is a transportation
    .   problem that is solved using some modification of a simplex algorithm, thus the complexity is
    .   exponential in the worst case, though, on average it is much faster. In the case of a real metric
    .   the lower boundary can be calculated even faster (using linear-time algorithm) and it can be used
    .   to determine roughly whether the two signatures are far enough so that they cannot relate to the
    .   same object.
    .   
    .   @param signature1 First signature, a \f$\texttt{size1}\times \texttt{dims}+1\f$ floating-point matrix.
    .   Each row stores the point weight followed by the point coordinates. The matrix is allowed to have
    .   a single column (weights only) if the user-defined cost matrix is used. The weights must be
    .   non-negative and have at least one non-zero value.
    .   @param signature2 Second signature of the same format as signature1 , though the number of rows
    .   may be different. The total weights may be different. In this case an extra "dummy" point is added
    .   to either signature1 or signature2. The weights must be non-negative and have at least one non-zero
    .   value.
    .   @param distType Used metric. See cv::DistanceTypes.
    .   @param cost User-defined \f$\texttt{size1}\times \texttt{size2}\f$ cost matrix. Also, if a cost matrix
    .   is used, lower boundary lowerBound cannot be calculated because it needs a metric function.
    .   @param lowerBound Optional input/output parameter: lower boundary of a distance between the two
    .   signatures that is a distance between mass centers. The lower boundary may not be calculated if
    .   the user-defined cost matrix is used, the total weights of point configurations are not equal, or
    .   if the signatures consist of weights only (the signature matrices have a single column). You
    .   **must** initialize \*lowerBound . If the calculated distance between mass centers is greater or
    .   equal to \*lowerBound (it means that the signatures are far enough), the function does not
    .   calculate EMD. In any case \*lowerBound is set to the calculated distance between mass centers on
    .   return. Thus, if you want to calculate both distance between mass centers and EMD, \*lowerBound
    .   should be set to 0.
    .   @param flow Resultant \f$\texttt{size1} \times \texttt{size2}\f$ flow matrix: \f$\texttt{flow}_{i,j}\f$ is
    .   a flow from \f$i\f$ -th point of signature1 to \f$j\f$ -th point of signature2 .
    """
    pass

def equalizeHist(src, dst=None): # real signature unknown; restored from __doc__
    """
    equalizeHist(src[, dst]) -> dst
    .   @brief Equalizes the histogram of a grayscale image.
    .   
    .   The function equalizes the histogram of the input image using the following algorithm:
    .   
    .   - Calculate the histogram \f$H\f$ for src .
    .   - Normalize the histogram so that the sum of histogram bins is 255.
    .   - Compute the integral of the histogram:
    .   \f[H'_i =  \sum _{0  \le j < i} H(j)\f]
    .   - Transform the image using \f$H'\f$ as a look-up table: \f$\texttt{dst}(x,y) = H'(\texttt{src}(x,y))\f$
    .   
    .   The algorithm normalizes the brightness and increases the contrast of the image.
    .   
    .   @param src Source 8-bit single channel image.
    .   @param dst Destination image of the same size and type as src .
    """
    pass

def erode(src, kernel, dst=None, anchor=None, iterations=None, borderType=None, borderValue=None): # real signature unknown; restored from __doc__
    """
    erode(src, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) -> dst
    .   @brief Erodes an image by using a specific structuring element.
    .   
    .   The function erodes the source image using the specified structuring element that determines the
    .   shape of a pixel neighborhood over which the minimum is taken:
    .   
    .   \f[\texttt{dst} (x,y) =  \min _{(x',y'):  \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\f]
    .   
    .   The function supports the in-place mode. Erosion can be applied several ( iterations ) times. In
    .   case of multi-channel images, each channel is processed independently.
    .   
    .   @param src input image; the number of channels can be arbitrary, but the depth should be one of
    .   CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
    .   @param dst output image of the same size and type as src.
    .   @param kernel structuring element used for erosion; if `element=Mat()`, a `3 x 3` rectangular
    .   structuring element is used. Kernel can be created using getStructuringElement.
    .   @param anchor position of the anchor within the element; default value (-1, -1) means that the
    .   anchor is at the element center.
    .   @param iterations number of times erosion is applied.
    .   @param borderType pixel extrapolation method, see cv::BorderTypes
    .   @param borderValue border value in case of a constant border
    .   @sa  dilate, morphologyEx, getStructuringElement
    """
    pass

def estimateAffine2D(from_, to, inliers=None, method=None, ransacReprojThreshold=None, maxIters=None, confidence=None, refineIters=None): # real signature unknown; restored from __doc__
    """
    estimateAffine2D(from, to[, inliers[, method[, ransacReprojThreshold[, maxIters[, confidence[, refineIters]]]]]]) -> retval, inliers
    .   @brief Computes an optimal affine transformation between two 2D point sets.
    .   
    .   @param from First input 2D point set.
    .   @param to Second input 2D point set.
    .   @param inliers Output vector indicating which points are inliers.
    .   @param method Robust method used to compute tranformation. The following methods are possible:
    .   -   cv::RANSAC - RANSAC-based robust method
    .   -   cv::LMEDS - Least-Median robust method
    .   RANSAC is the default method.
    .   @param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider
    .   a point as an inlier. Applies only to RANSAC.
    .   @param maxIters The maximum number of robust method iterations, 2000 is the maximum it can be.
    .   @param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
    .   between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
    .   significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
    .   @param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
    .   Passing 0 will disable refining, so the output matrix will be output of robust method.
    .   
    .   @return Output 2D affine transformation matrix \f$2 \times 3\f$ or empty matrix if transformation
    .   could not be estimated.
    .   
    .   The function estimates an optimal 2D affine transformation between two 2D point sets using the
    .   selected robust algorithm.
    .   
    .   The computed transformation is then refined further (using only inliers) with the
    .   Levenberg-Marquardt method to reduce the re-projection error even more.
    .   
    .   @note
    .   The RANSAC method can handle practically any ratio of outliers but need a threshold to
    .   distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
    .   correctly only when there are more than 50% of inliers.
    .   
    .   @sa estimateAffinePartial2D, getAffineTransform
    """
    pass

def estimateAffine3D(src, dst, out=None, inliers=None, ransacThreshold=None, confidence=None): # real signature unknown; restored from __doc__
    """
    estimateAffine3D(src, dst[, out[, inliers[, ransacThreshold[, confidence]]]]) -> retval, out, inliers
    .   @brief Computes an optimal affine transformation between two 3D point sets.
    .   
    .   @param src First input 3D point set.
    .   @param dst Second input 3D point set.
    .   @param out Output 3D affine transformation matrix \f$3 \times 4\f$ .
    .   @param inliers Output vector indicating which points are inliers.
    .   @param ransacThreshold Maximum reprojection error in the RANSAC algorithm to consider a point as
    .   an inlier.
    .   @param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
    .   between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
    .   significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
    .   
    .   The function estimates an optimal 3D affine transformation between two 3D point sets using the
    .   RANSAC algorithm.
    """
    pass

def estimateAffinePartial2D(from_, to, inliers=None, method=None, ransacReprojThreshold=None, maxIters=None, confidence=None, refineIters=None): # real signature unknown; restored from __doc__
    """
    estimateAffinePartial2D(from, to[, inliers[, method[, ransacReprojThreshold[, maxIters[, confidence[, refineIters]]]]]]) -> retval, inliers
    .   @brief Computes an optimal limited affine transformation with 4 degrees of freedom between
    .   two 2D point sets.
    .   
    .   @param from First input 2D point set.
    .   @param to Second input 2D point set.
    .   @param inliers Output vector indicating which points are inliers.
    .   @param method Robust method used to compute tranformation. The following methods are possible:
    .   -   cv::RANSAC - RANSAC-based robust method
    .   -   cv::LMEDS - Least-Median robust method
    .   RANSAC is the default method.
    .   @param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider
    .   a point as an inlier. Applies only to RANSAC.
    .   @param maxIters The maximum number of robust method iterations, 2000 is the maximum it can be.
    .   @param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
    .   between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
    .   significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
    .   @param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
    .   Passing 0 will disable refining, so the output matrix will be output of robust method.
    .   
    .   @return Output 2D affine transformation (4 degrees of freedom) matrix \f$2 \times 3\f$ or
    .   empty matrix if transformation could not be estimated.
    .   
    .   The function estimates an optimal 2D affine transformation with 4 degrees of freedom limited to
    .   combinations of translation, rotation, and uniform scaling. Uses the selected algorithm for robust
    .   estimation.
    .   
    .   The computed transformation is then refined further (using only inliers) with the
    .   Levenberg-Marquardt method to reduce the re-projection error even more.
    .   
    .   Estimated transformation matrix is:
    .   \f[ \begin{bmatrix} \cos(\theta)s & -\sin(\theta)s & tx \\
    .   \sin(\theta)s & \cos(\theta)s & ty
    .   \end{bmatrix} \f]
    .   Where \f$ \theta \f$ is the rotation angle, \f$ s \f$ the scaling factor and \f$ tx, ty \f$ are
    .   translations in \f$ x, y \f$ axes respectively.
    .   
    .   @note
    .   The RANSAC method can handle practically any ratio of outliers but need a threshold to
    .   distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
    .   correctly only when there are more than 50% of inliers.
    .   
    .   @sa estimateAffine2D, getAffineTransform
    """
    pass

def estimateRigidTransform(src, dst, fullAffine): # real signature unknown; restored from __doc__
    """
    estimateRigidTransform(src, dst, fullAffine) -> retval
    .   @brief Computes an optimal affine transformation between two 2D point sets.
    .   
    .   @param src First input 2D point set stored in std::vector or Mat, or an image stored in Mat.
    .   @param dst Second input 2D point set of the same size and the same type as A, or another image.
    .   @param fullAffine If true, the function finds an optimal affine transformation with no additional
    .   restrictions (6 degrees of freedom). Otherwise, the class of transformations to choose from is
    .   limited to combinations of translation, rotation, and uniform scaling (4 degrees of freedom).
    .   
    .   The function finds an optimal affine transform *[A|b]* (a 2 x 3 floating-point matrix) that
    .   approximates best the affine transformation between:
    .   
    .   *   Two point sets
    .   *   Two raster images. In this case, the function first finds some features in the src image and
    .   finds the corresponding features in dst image. After that, the problem is reduced to the first
    .   case.
    .   In case of point sets, the problem is formulated as follows: you need to find a 2x2 matrix *A* and
    .   2x1 vector *b* so that:
    .   
    .   \f[[A^*|b^*] = arg  \min _{[A|b]}  \sum _i  \| \texttt{dst}[i] - A { \texttt{src}[i]}^T - b  \| ^2\f]
    .   where src[i] and dst[i] are the i-th points in src and dst, respectively
    .   \f$[A|b]\f$ can be either arbitrary (when fullAffine=true ) or have a form of
    .   \f[\begin{bmatrix} a_{11} & a_{12} & b_1  \\ -a_{12} & a_{11} & b_2  \end{bmatrix}\f]
    .   when fullAffine=false.
    .   
    .   @sa
    .   estimateAffine2D, estimateAffinePartial2D, getAffineTransform, getPerspectiveTransform, findHomography
    """
    pass

def exp(src, dst=None): # real signature unknown; restored from __doc__
    """
    exp(src[, dst]) -> dst
    .   @brief Calculates the exponent of every array element.
    .   
    .   The function cv::exp calculates the exponent of every element of the input
    .   array:
    .   \f[\texttt{dst} [I] = e^{ src(I) }\f]
    .   
    .   The maximum relative error is about 7e-6 for single-precision input and
    .   less than 1e-10 for double-precision input. Currently, the function
    .   converts denormalized values to zeros on output. Special values (NaN,
    .   Inf) are not handled.
    .   @param src input array.
    .   @param dst output array of the same size and type as src.
    .   @sa log , cartToPolar , polarToCart , phase , pow , sqrt , magnitude
    """
    pass

def extractChannel(src, coi, dst=None): # real signature unknown; restored from __doc__
    """
    extractChannel(src, coi[, dst]) -> dst
    .   @brief Extracts a single channel from src (coi is 0-based index)
    .   @param src input array
    .   @param dst output array
    .   @param coi index of channel to extract
    .   @sa mixChannels, split
    """
    pass

def FarnebackOpticalFlow_create(numLevels=None, pyrScale=None, fastPyramids=None, winSize=None, numIters=None, polyN=None, polySigma=None, flags=None): # real signature unknown; restored from __doc__
    """
    FarnebackOpticalFlow_create([, numLevels[, pyrScale[, fastPyramids[, winSize[, numIters[, polyN[, polySigma[, flags]]]]]]]]) -> retval
    .
    """
    pass

def fastAtan2(y, x): # real signature unknown; restored from __doc__
    """
    fastAtan2(y, x) -> retval
    .   @brief Calculates the angle of a 2D vector in degrees.
    .   
    .   The function fastAtan2 calculates the full-range angle of an input 2D vector. The angle is measured
    .   in degrees and varies from 0 to 360 degrees. The accuracy is about 0.3 degrees.
    .   @param x x-coordinate of the vector.
    .   @param y y-coordinate of the vector.
    """
    pass

def FastFeatureDetector_create(threshold=None, nonmaxSuppression=None, type=None): # real signature unknown; restored from __doc__
    """
    FastFeatureDetector_create([, threshold[, nonmaxSuppression[, type]]]) -> retval
    .
    """
    pass

def fastNlMeansDenoising(src, dst=None, h=None, templateWindowSize=None, searchWindowSize=None): # real signature unknown; restored from __doc__
    """
    fastNlMeansDenoising(src[, dst[, h[, templateWindowSize[, searchWindowSize]]]]) -> dst
    .   @brief Perform image denoising using Non-local Means Denoising algorithm
    .   <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational
    .   optimizations. Noise expected to be a gaussian white noise
    .   
    .   @param src Input 8-bit 1-channel, 2-channel, 3-channel or 4-channel image.
    .   @param dst Output image with the same size and type as src .
    .   @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
    .   Should be odd. Recommended value 7 pixels
    .   @param searchWindowSize Size in pixels of the window that is used to compute weighted average for
    .   given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
    .   denoising time. Recommended value 21 pixels
    .   @param h Parameter regulating filter strength. Big h value perfectly removes noise but also
    .   removes image details, smaller h value preserves details but also preserves some noise
    .   
    .   This function expected to be applied to grayscale images. For colored images look at
    .   fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
    .   image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
    .   image to CIELAB colorspace and then separately denoise L and AB components with different h
    .   parameter.
    
    
    
    fastNlMeansDenoising(src, h[, dst[, templateWindowSize[, searchWindowSize[, normType]]]]) -> dst
    .   @brief Perform image denoising using Non-local Means Denoising algorithm
    .   <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational
    .   optimizations. Noise expected to be a gaussian white noise
    .   
    .   @param src Input 8-bit or 16-bit (only with NORM_L1) 1-channel,
    .   2-channel, 3-channel or 4-channel image.
    .   @param dst Output image with the same size and type as src .
    .   @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
    .   Should be odd. Recommended value 7 pixels
    .   @param searchWindowSize Size in pixels of the window that is used to compute weighted average for
    .   given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
    .   denoising time. Recommended value 21 pixels
    .   @param h Array of parameters regulating filter strength, either one
    .   parameter applied to all channels or one per channel in dst. Big h value
    .   perfectly removes noise but also removes image details, smaller h
    .   value preserves details but also preserves some noise
    .   @param normType Type of norm used for weight calculation. Can be either NORM_L2 or NORM_L1
    .   
    .   This function expected to be applied to grayscale images. For colored images look at
    .   fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
    .   image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
    .   image to CIELAB colorspace and then separately denoise L and AB components with different h
    .   parameter.
    """
    pass

def fastNlMeansDenoisingColored(src, dst=None, h=None, hColor=None, templateWindowSize=None, searchWindowSize=None): # real signature unknown; restored from __doc__
    """
    fastNlMeansDenoisingColored(src[, dst[, h[, hColor[, templateWindowSize[, searchWindowSize]]]]]) -> dst
    .   @brief Modification of fastNlMeansDenoising function for colored images
    .   
    .   @param src Input 8-bit 3-channel image.
    .   @param dst Output image with the same size and type as src .
    .   @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
    .   Should be odd. Recommended value 7 pixels
    .   @param searchWindowSize Size in pixels of the window that is used to compute weighted average for
    .   given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
    .   denoising time. Recommended value 21 pixels
    .   @param h Parameter regulating filter strength for luminance component. Bigger h value perfectly
    .   removes noise but also removes image details, smaller h value preserves details but also preserves
    .   some noise
    .   @param hColor The same as h but for color components. For most images value equals 10
    .   will be enough to remove colored noise and do not distort colors
    .   
    .   The function converts image to CIELAB colorspace and then separately denoise L and AB components
    .   with given h parameters using fastNlMeansDenoising function.
    """
    pass

def fastNlMeansDenoisingColoredMulti(srcImgs, imgToDenoiseIndex, temporalWindowSize, dst=None, h=None, hColor=None, templateWindowSize=None, searchWindowSize=None): # real signature unknown; restored from __doc__
    """
    fastNlMeansDenoisingColoredMulti(srcImgs, imgToDenoiseIndex, temporalWindowSize[, dst[, h[, hColor[, templateWindowSize[, searchWindowSize]]]]]) -> dst
    .   @brief Modification of fastNlMeansDenoisingMulti function for colored images sequences
    .   
    .   @param srcImgs Input 8-bit 3-channel images sequence. All images should have the same type and
    .   size.
    .   @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
    .   @param temporalWindowSize Number of surrounding images to use for target image denoising. Should
    .   be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
    .   imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
    .   srcImgs[imgToDenoiseIndex] image.
    .   @param dst Output image with the same size and type as srcImgs images.
    .   @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
    .   Should be odd. Recommended value 7 pixels
    .   @param searchWindowSize Size in pixels of the window that is used to compute weighted average for
    .   given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
    .   denoising time. Recommended value 21 pixels
    .   @param h Parameter regulating filter strength for luminance component. Bigger h value perfectly
    .   removes noise but also removes image details, smaller h value preserves details but also preserves
    .   some noise.
    .   @param hColor The same as h but for color components.
    .   
    .   The function converts images to CIELAB colorspace and then separately denoise L and AB components
    .   with given h parameters using fastNlMeansDenoisingMulti function.
    """
    pass

def fastNlMeansDenoisingMulti(srcImgs, imgToDenoiseIndex, temporalWindowSize, dst=None, h=None, templateWindowSize=None, searchWindowSize=None): # real signature unknown; restored from __doc__
    """
    fastNlMeansDenoisingMulti(srcImgs, imgToDenoiseIndex, temporalWindowSize[, dst[, h[, templateWindowSize[, searchWindowSize]]]]) -> dst
    .   @brief Modification of fastNlMeansDenoising function for images sequence where consequtive images have been
    .   captured in small period of time. For example video. This version of the function is for grayscale
    .   images or for manual manipulation with colorspaces. For more details see
    .   <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.6394>
    .   
    .   @param srcImgs Input 8-bit 1-channel, 2-channel, 3-channel or
    .   4-channel images sequence. All images should have the same type and
    .   size.
    .   @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
    .   @param temporalWindowSize Number of surrounding images to use for target image denoising. Should
    .   be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
    .   imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
    .   srcImgs[imgToDenoiseIndex] image.
    .   @param dst Output image with the same size and type as srcImgs images.
    .   @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
    .   Should be odd. Recommended value 7 pixels
    .   @param searchWindowSize Size in pixels of the window that is used to compute weighted average for
    .   given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
    .   denoising time. Recommended value 21 pixels
    .   @param h Parameter regulating filter strength. Bigger h value
    .   perfectly removes noise but also removes image details, smaller h
    .   value preserves details but also preserves some noise
    
    
    
    fastNlMeansDenoisingMulti(srcImgs, imgToDenoiseIndex, temporalWindowSize, h[, dst[, templateWindowSize[, searchWindowSize[, normType]]]]) -> dst
    .   @brief Modification of fastNlMeansDenoising function for images sequence where consequtive images have been
    .   captured in small period of time. For example video. This version of the function is for grayscale
    .   images or for manual manipulation with colorspaces. For more details see
    .   <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.6394>
    .   
    .   @param srcImgs Input 8-bit or 16-bit (only with NORM_L1) 1-channel,
    .   2-channel, 3-channel or 4-channel images sequence. All images should
    .   have the same type and size.
    .   @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
    .   @param temporalWindowSize Number of surrounding images to use for target image denoising. Should
    .   be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
    .   imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
    .   srcImgs[imgToDenoiseIndex] image.
    .   @param dst Output image with the same size and type as srcImgs images.
    .   @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
    .   Should be odd. Recommended value 7 pixels
    .   @param searchWindowSize Size in pixels of the window that is used to compute weighted average for
    .   given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
    .   denoising time. Recommended value 21 pixels
    .   @param h Array of parameters regulating filter strength, either one
    .   parameter applied to all channels or one per channel in dst. Big h value
    .   perfectly removes noise but also removes image details, smaller h
    .   value preserves details but also preserves some noise
    .   @param normType Type of norm used for weight calculation. Can be either NORM_L2 or NORM_L1
    """
    pass

def FileNode(): # real signature unknown; restored from __doc__
    """
    FileNode() -> <FileNode object>
    .   @brief The constructors.
    .   
    .   These constructors are used to create a default file node, construct it from obsolete structures or
    .   from the another file node.
    """
    pass

def FileStorage(source=None, flags=None, encoding=None): # real signature unknown; restored from __doc__
    """
    FileStorage([source, flags[, encoding]]) -> <FileStorage object>
    .   @brief The constructors.
    .   
    .   The full constructor opens the file. Alternatively you can use the default constructor and then
    .   call FileStorage::open.
    """
    pass

def fillConvexPoly(img, points, color, lineType=None, shift=None): # real signature unknown; restored from __doc__
    """
    fillConvexPoly(img, points, color[, lineType[, shift]]) -> img
    .   @brief Fills a convex polygon.
    .   
    .   The function fillConvexPoly draws a filled convex polygon. This function is much faster than the
    .   function cv::fillPoly . It can fill not only convex polygons but any monotonic polygon without
    .   self-intersections, that is, a polygon whose contour intersects every horizontal line (scan line)
    .   twice at the most (though, its top-most and/or the bottom edge could be horizontal).
    .   
    .   @param img Image.
    .   @param points Polygon vertices.
    .   @param color Polygon color.
    .   @param lineType Type of the polygon boundaries. See the line description.
    .   @param shift Number of fractional bits in the vertex coordinates.
    """
    pass

def fillPoly(img, pts, color, lineType=None, shift=None, offset=None): # real signature unknown; restored from __doc__
    """
    fillPoly(img, pts, color[, lineType[, shift[, offset]]]) -> img
    .   @brief Fills the area bounded by one or more polygons.
    .   
    .   The function fillPoly fills an area bounded by several polygonal contours. The function can fill
    .   complex areas, for example, areas with holes, contours with self-intersections (some of their
    .   parts), and so forth.
    .   
    .   @param img Image.
    .   @param pts Array of polygons where each polygon is represented as an array of points.
    .   @param color Polygon color.
    .   @param lineType Type of the polygon boundaries. See the line description.
    .   @param shift Number of fractional bits in the vertex coordinates.
    .   @param offset Optional offset of all points of the contours.
    """
    pass

def filter2D(src, ddepth, kernel, dst=None, anchor=None, delta=None, borderType=None): # real signature unknown; restored from __doc__
    """
    filter2D(src, ddepth, kernel[, dst[, anchor[, delta[, borderType]]]]) -> dst
    .   @brief Convolves an image with the kernel.
    .   
    .   The function applies an arbitrary linear filter to an image. In-place operation is supported. When
    .   the aperture is partially outside the image, the function interpolates outlier pixel values
    .   according to the specified border mode.
    .   
    .   The function does actually compute correlation, not the convolution:
    .   
    .   \f[\texttt{dst} (x,y) =  \sum _{ \stackrel{0\leq x' < \texttt{kernel.cols},}{0\leq y' < \texttt{kernel.rows}} }  \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y} )\f]
    .   
    .   That is, the kernel is not mirrored around the anchor point. If you need a real convolution, flip
    .   the kernel using cv::flip and set the new anchor to `(kernel.cols - anchor.x - 1, kernel.rows -
    .   anchor.y - 1)`.
    .   
    .   The function uses the DFT-based algorithm in case of sufficiently large kernels (~`11 x 11` or
    .   larger) and the direct algorithm for small kernels.
    .   
    .   @param src input image.
    .   @param dst output image of the same size and the same number of channels as src.
    .   @param ddepth desired depth of the destination image, see @ref filter_depths "combinations"
    .   @param kernel convolution kernel (or rather a correlation kernel), a single-channel floating point
    .   matrix; if you want to apply different kernels to different channels, split the image into
    .   separate color planes using split and process them individually.
    .   @param anchor anchor of the kernel that indicates the relative position of a filtered point within
    .   the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor
    .   is at the kernel center.
    .   @param delta optional value added to the filtered pixels before storing them in dst.
    .   @param borderType pixel extrapolation method, see cv::BorderTypes
    .   @sa  sepFilter2D, dft, matchTemplate
    """
    pass

def filterSpeckles(img, newVal, maxSpeckleSize, maxDiff, buf=None): # real signature unknown; restored from __doc__
    """
    filterSpeckles(img, newVal, maxSpeckleSize, maxDiff[, buf]) -> img, buf
    .   @brief Filters off small noise blobs (speckles) in the disparity map
    .   
    .   @param img The input 16-bit signed disparity image
    .   @param newVal The disparity value used to paint-off the speckles
    .   @param maxSpeckleSize The maximum speckle size to consider it a speckle. Larger blobs are not
    .   affected by the algorithm
    .   @param maxDiff Maximum difference between neighbor disparity pixels to put them into the same
    .   blob. Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point
    .   disparity map, where disparity values are multiplied by 16, this scale factor should be taken into
    .   account when specifying this parameter value.
    .   @param buf The optional temporary buffer to avoid memory allocation within the function.
    """
    pass

def findChessboardCorners(image, patternSize, corners=None, flags=None): # real signature unknown; restored from __doc__
    """
    findChessboardCorners(image, patternSize[, corners[, flags]]) -> retval, corners
    .   @brief Finds the positions of internal corners of the chessboard.
    .   
    .   @param image Source chessboard view. It must be an 8-bit grayscale or color image.
    .   @param patternSize Number of inner corners per a chessboard row and column
    .   ( patternSize = cvSize(points_per_row,points_per_colum) = cvSize(columns,rows) ).
    .   @param corners Output array of detected corners.
    .   @param flags Various operation flags that can be zero or a combination of the following values:
    .   -   **CALIB_CB_ADAPTIVE_THRESH** Use adaptive thresholding to convert the image to black
    .   and white, rather than a fixed threshold level (computed from the average image brightness).
    .   -   **CALIB_CB_NORMALIZE_IMAGE** Normalize the image gamma with equalizeHist before
    .   applying fixed or adaptive thresholding.
    .   -   **CALIB_CB_FILTER_QUADS** Use additional criteria (like contour area, perimeter,
    .   square-like shape) to filter out false quads extracted at the contour retrieval stage.
    .   -   **CALIB_CB_FAST_CHECK** Run a fast check on the image that looks for chessboard corners,
    .   and shortcut the call if none is found. This can drastically speed up the call in the
    .   degenerate condition when no chessboard is observed.
    .   
    .   The function attempts to determine whether the input image is a view of the chessboard pattern and
    .   locate the internal chessboard corners. The function returns a non-zero value if all of the corners
    .   are found and they are placed in a certain order (row by row, left to right in every row).
    .   Otherwise, if the function fails to find all the corners or reorder them, it returns 0. For example,
    .   a regular chessboard has 8 x 8 squares and 7 x 7 internal corners, that is, points where the black
    .   squares touch each other. The detected coordinates are approximate, and to determine their positions
    .   more accurately, the function calls cornerSubPix. You also may use the function cornerSubPix with
    .   different parameters if returned coordinates are not accurate enough.
    .   
    .   Sample usage of detecting and drawing chessboard corners: :
    .   @code
    .   Size patternsize(8,6); //interior number of corners
    .   Mat gray = ....; //source image
    .   vector<Point2f> corners; //this will be filled by the detected corners
    .   
    .   //CALIB_CB_FAST_CHECK saves a lot of time on images
    .   //that do not contain any chessboard corners
    .   bool patternfound = findChessboardCorners(gray, patternsize, corners,
    .   CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE
    .   + CALIB_CB_FAST_CHECK);
    .   
    .   if(patternfound)
    .   cornerSubPix(gray, corners, Size(11, 11), Size(-1, -1),
    .   TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1));
    .   
    .   drawChessboardCorners(img, patternsize, Mat(corners), patternfound);
    .   @endcode
    .   @note The function requires white space (like a square-thick border, the wider the better) around
    .   the board to make the detection more robust in various environments. Otherwise, if there is no
    .   border and the background is dark, the outer black squares cannot be segmented properly and so the
    .   square grouping and ordering algorithm fails.
    """
    pass

def findCirclesGrid(image, patternSize, flags, blobDetector, parameters, centers=None): # real signature unknown; restored from __doc__
    """
    findCirclesGrid(image, patternSize, flags, blobDetector, parameters[, centers]) -> retval, centers
    .   @brief Finds centers in the grid of circles.
    .   
    .   @param image grid view of input circles; it must be an 8-bit grayscale or color image.
    .   @param patternSize number of circles per row and column
    .   ( patternSize = Size(points_per_row, points_per_colum) ).
    .   @param centers output array of detected centers.
    .   @param flags various operation flags that can be one of the following values:
    .   -   **CALIB_CB_SYMMETRIC_GRID** uses symmetric pattern of circles.
    .   -   **CALIB_CB_ASYMMETRIC_GRID** uses asymmetric pattern of circles.
    .   -   **CALIB_CB_CLUSTERING** uses a special algorithm for grid detection. It is more robust to
    .   perspective distortions but much more sensitive to background clutter.
    .   @param blobDetector feature detector that finds blobs like dark circles on light background.
    .   @param parameters struct for finding circles in a grid pattern.
    .   
    .   The function attempts to determine whether the input image contains a grid of circles. If it is, the
    .   function locates centers of the circles. The function returns a non-zero value if all of the centers
    .   have been found and they have been placed in a certain order (row by row, left to right in every
    .   row). Otherwise, if the function fails to find all the corners or reorder them, it returns 0.
    .   
    .   Sample usage of detecting and drawing the centers of circles: :
    .   @code
    .   Size patternsize(7,7); //number of centers
    .   Mat gray = ....; //source image
    .   vector<Point2f> centers; //this will be filled by the detected centers
    .   
    .   bool patternfound = findCirclesGrid(gray, patternsize, centers);
    .   
    .   drawChessboardCorners(img, patternsize, Mat(centers), patternfound);
    .   @endcode
    .   @note The function requires white space (like a square-thick border, the wider the better) around
    .   the board to make the detection more robust in various environments.
    
    
    
    findCirclesGrid(image, patternSize[, centers[, flags[, blobDetector]]]) -> retval, centers
    .   @overload
    """
    pass

def findContours(image, mode, method, contours=None, hierarchy=None, offset=None): # real signature unknown; restored from __doc__
    """
    findContours(image, mode, method[, contours[, hierarchy[, offset]]]) -> image, contours, hierarchy
    .   @brief Finds contours in a binary image.
    .   
    .   The function retrieves contours from the binary image using the algorithm @cite Suzuki85 . The contours
    .   are a useful tool for shape analysis and object detection and recognition. See squares.cpp in the
    .   OpenCV sample directory.
    .   @note Since opencv 3.2 source image is not modified by this function.
    .   
    .   @param image Source, an 8-bit single-channel image. Non-zero pixels are treated as 1's. Zero
    .   pixels remain 0's, so the image is treated as binary . You can use cv::compare, cv::inRange, cv::threshold ,
    .   cv::adaptiveThreshold, cv::Canny, and others to create a binary image out of a grayscale or color one.
    .   If mode equals to cv::RETR_CCOMP or cv::RETR_FLOODFILL, the input can also be a 32-bit integer image of labels (CV_32SC1).
    .   @param contours Detected contours. Each contour is stored as a vector of points (e.g.
    .   std::vector<std::vector<cv::Point> >).
    .   @param hierarchy Optional output vector (e.g. std::vector<cv::Vec4i>), containing information about the image topology. It has
    .   as many elements as the number of contours. For each i-th contour contours[i], the elements
    .   hierarchy[i][0] , hierarchy[i][1] , hierarchy[i][2] , and hierarchy[i][3] are set to 0-based indices
    .   in contours of the next and previous contours at the same hierarchical level, the first child
    .   contour and the parent contour, respectively. If for the contour i there are no next, previous,
    .   parent, or nested contours, the corresponding elements of hierarchy[i] will be negative.
    .   @param mode Contour retrieval mode, see cv::RetrievalModes
    .   @param method Contour approximation method, see cv::ContourApproximationModes
    .   @param offset Optional offset by which every contour point is shifted. This is useful if the
    .   contours are extracted from the image ROI and then they should be analyzed in the whole image
    .   context.
    """
    pass

def findEssentialMat(points1, points2, cameraMatrix, method=None, prob=None, threshold=None, mask=None): # real signature unknown; restored from __doc__
    """
    findEssentialMat(points1, points2, cameraMatrix[, method[, prob[, threshold[, mask]]]]) -> retval, mask
    .   @brief Calculates an essential matrix from the corresponding points in two images.
    .   
    .   @param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should
    .   be floating-point (single or double precision).
    .   @param points2 Array of the second image points of the same size and format as points1 .
    .   @param cameraMatrix Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
    .   Note that this function assumes that points1 and points2 are feature points from cameras with the
    .   same camera matrix.
    .   @param method Method for computing a fundamental matrix.
    .   -   **RANSAC** for the RANSAC algorithm.
    .   -   **MEDS** for the LMedS algorithm.
    .   @param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
    .   confidence (probability) that the estimated matrix is correct.
    .   @param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
    .   line in pixels, beyond which the point is considered an outlier and is not used for computing the
    .   final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
    .   point localization, image resolution, and the image noise.
    .   @param mask Output array of N elements, every element of which is set to 0 for outliers and to 1
    .   for the other points. The array is computed only in the RANSAC and LMedS methods.
    .   
    .   This function estimates essential matrix based on the five-point algorithm solver in @cite Nister03 .
    .   @cite SteweniusCFS is also a related. The epipolar geometry is described by the following equation:
    .   
    .   \f[[p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\f]
    .   
    .   where \f$E\f$ is an essential matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
    .   second images, respectively. The result of this function may be passed further to
    .   decomposeEssentialMat or recoverPose to recover the relative pose between cameras.
    
    
    
    findEssentialMat(points1, points2[, focal[, pp[, method[, prob[, threshold[, mask]]]]]]) -> retval, mask
    .   @overload
    .   @param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should
    .   be floating-point (single or double precision).
    .   @param points2 Array of the second image points of the same size and format as points1 .
    .   @param focal focal length of the camera. Note that this function assumes that points1 and points2
    .   are feature points from cameras with same focal length and principal point.
    .   @param pp principal point of the camera.
    .   @param method Method for computing a fundamental matrix.
    .   -   **RANSAC** for the RANSAC algorithm.
    .   -   **LMEDS** for the LMedS algorithm.
    .   @param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
    .   line in pixels, beyond which the point is considered an outlier and is not used for computing the
    .   final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
    .   point localization, image resolution, and the image noise.
    .   @param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
    .   confidence (probability) that the estimated matrix is correct.
    .   @param mask Output array of N elements, every element of which is set to 0 for outliers and to 1
    .   for the other points. The array is computed only in the RANSAC and LMedS methods.
    .   
    .   This function differs from the one above that it computes camera matrix from focal length and
    .   principal point:
    .   
    .   \f[K =
    .   \begin{bmatrix}
    .   f & 0 & x_{pp}  \\
    .   0 & f & y_{pp}  \\
    .   0 & 0 & 1
    .   \end{bmatrix}\f]
    """
    pass

def findFundamentalMat(points1, points2, method=None, param1=None, param2=None, mask=None): # real signature unknown; restored from __doc__
    """
    findFundamentalMat(points1, points2[, method[, param1[, param2[, mask]]]]) -> retval, mask
    .   @brief Calculates a fundamental matrix from the corresponding points in two images.
    .   
    .   @param points1 Array of N points from the first image. The point coordinates should be
    .   floating-point (single or double precision).
    .   @param points2 Array of the second image points of the same size and format as points1 .
    .   @param method Method for computing a fundamental matrix.
    .   -   **CV_FM_7POINT** for a 7-point algorithm. \f$N = 7\f$
    .   -   **CV_FM_8POINT** for an 8-point algorithm. \f$N \ge 8\f$
    .   -   **CV_FM_RANSAC** for the RANSAC algorithm. \f$N \ge 8\f$
    .   -   **CV_FM_LMEDS** for the LMedS algorithm. \f$N \ge 8\f$
    .   @param param1 Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
    .   line in pixels, beyond which the point is considered an outlier and is not used for computing the
    .   final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
    .   point localization, image resolution, and the image noise.
    .   @param param2 Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level
    .   of confidence (probability) that the estimated matrix is correct.
    .   @param mask
    .   
    .   The epipolar geometry is described by the following equation:
    .   
    .   \f[[p_2; 1]^T F [p_1; 1] = 0\f]
    .   
    .   where \f$F\f$ is a fundamental matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
    .   second images, respectively.
    .   
    .   The function calculates the fundamental matrix using one of four methods listed above and returns
    .   the found fundamental matrix. Normally just one matrix is found. But in case of the 7-point
    .   algorithm, the function may return up to 3 solutions ( \f$9 \times 3\f$ matrix that stores all 3
    .   matrices sequentially).
    .   
    .   The calculated fundamental matrix may be passed further to computeCorrespondEpilines that finds the
    .   epipolar lines corresponding to the specified points. It can also be passed to
    .   stereoRectifyUncalibrated to compute the rectification transformation. :
    .   @code
    .   // Example. Estimation of fundamental matrix using the RANSAC algorithm
    .   int point_count = 100;
    .   vector<Point2f> points1(point_count);
    .   vector<Point2f> points2(point_count);
    .   
    .   // initialize the points here ...
    .   for( int i = 0; i < point_count; i++ )
    .   {
    .   points1[i] = ...;
    .   points2[i] = ...;
    .   }
    .   
    .   Mat fundamental_matrix =
    .   findFundamentalMat(points1, points2, FM_RANSAC, 3, 0.99);
    .   @endcode
    """
    pass

def findHomography(srcPoints, dstPoints, method=None, ransacReprojThreshold=None, mask=None, maxIters=None, confidence=None): # real signature unknown; restored from __doc__
    """
    findHomography(srcPoints, dstPoints[, method[, ransacReprojThreshold[, mask[, maxIters[, confidence]]]]]) -> retval, mask
    .   @brief Finds a perspective transformation between two planes.
    .   
    .   @param srcPoints Coordinates of the points in the original plane, a matrix of the type CV_32FC2
    .   or vector\<Point2f\> .
    .   @param dstPoints Coordinates of the points in the target plane, a matrix of the type CV_32FC2 or
    .   a vector\<Point2f\> .
    .   @param method Method used to computed a homography matrix. The following methods are possible:
    .   -   **0** - a regular method using all the points
    .   -   **RANSAC** - RANSAC-based robust method
    .   -   **LMEDS** - Least-Median robust method
    .   -   **RHO**    - PROSAC-based robust method
    .   @param ransacReprojThreshold Maximum allowed reprojection error to treat a point pair as an inlier
    .   (used in the RANSAC and RHO methods only). That is, if
    .   \f[\| \texttt{dstPoints} _i -  \texttt{convertPointsHomogeneous} ( \texttt{H} * \texttt{srcPoints} _i) \|  >  \texttt{ransacReprojThreshold}\f]
    .   then the point \f$i\f$ is considered an outlier. If srcPoints and dstPoints are measured in pixels,
    .   it usually makes sense to set this parameter somewhere in the range of 1 to 10.
    .   @param mask Optional output mask set by a robust method ( RANSAC or LMEDS ). Note that the input
    .   mask values are ignored.
    .   @param maxIters The maximum number of RANSAC iterations, 2000 is the maximum it can be.
    .   @param confidence Confidence level, between 0 and 1.
    .   
    .   The function finds and returns the perspective transformation \f$H\f$ between the source and the
    .   destination planes:
    .   
    .   \f[s_i  \vecthree{x'_i}{y'_i}{1} \sim H  \vecthree{x_i}{y_i}{1}\f]
    .   
    .   so that the back-projection error
    .   
    .   \f[\sum _i \left ( x'_i- \frac{h_{11} x_i + h_{12} y_i + h_{13}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2+ \left ( y'_i- \frac{h_{21} x_i + h_{22} y_i + h_{23}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2\f]
    .   
    .   is minimized. If the parameter method is set to the default value 0, the function uses all the point
    .   pairs to compute an initial homography estimate with a simple least-squares scheme.
    .   
    .   However, if not all of the point pairs ( \f$srcPoints_i\f$, \f$dstPoints_i\f$ ) fit the rigid perspective
    .   transformation (that is, there are some outliers), this initial estimate will be poor. In this case,
    .   you can use one of the three robust methods. The methods RANSAC, LMeDS and RHO try many different
    .   random subsets of the corresponding point pairs (of four pairs each), estimate the homography matrix
    .   using this subset and a simple least-square algorithm, and then compute the quality/goodness of the
    .   computed homography (which is the number of inliers for RANSAC or the median re-projection error for
    .   LMeDs). The best subset is then used to produce the initial estimate of the homography matrix and
    .   the mask of inliers/outliers.
    .   
    .   Regardless of the method, robust or not, the computed homography matrix is refined further (using
    .   inliers only in case of a robust method) with the Levenberg-Marquardt method to reduce the
    .   re-projection error even more.
    .   
    .   The methods RANSAC and RHO can handle practically any ratio of outliers but need a threshold to
    .   distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
    .   correctly only when there are more than 50% of inliers. Finally, if there are no outliers and the
    .   noise is rather small, use the default method (method=0).
    .   
    .   The function is used to find initial intrinsic and extrinsic matrices. Homography matrix is
    .   determined up to a scale. Thus, it is normalized so that \f$h_{33}=1\f$. Note that whenever an H matrix
    .   cannot be estimated, an empty one will be returned.
    .   
    .   @sa
    .   getAffineTransform, estimateAffine2D, estimateAffinePartial2D, getPerspectiveTransform, warpPerspective,
    .   perspectiveTransform
    .   
    .   
    .   @note
    .   -   A example on calculating a homography for image matching can be found at
    .   opencv_source_code/samples/cpp/video_homography.cpp
    """
    pass

def findNonZero(src, idx=None): # real signature unknown; restored from __doc__
    """
    findNonZero(src[, idx]) -> idx
    .   @brief Returns the list of locations of non-zero pixels
    .   
    .   Given a binary matrix (likely returned from an operation such
    .   as threshold(), compare(), >, ==, etc, return all of
    .   the non-zero indices as a cv::Mat or std::vector<cv::Point> (x,y)
    .   For example:
    .   @code{.cpp}
    .   cv::Mat binaryImage; // input, binary image
    .   cv::Mat locations;   // output, locations of non-zero pixels
    .   cv::findNonZero(binaryImage, locations);
    .   
    .   // access pixel coordinates
    .   Point pnt = locations.at<Point>(i);
    .   @endcode
    .   or
    .   @code{.cpp}
    .   cv::Mat binaryImage; // input, binary image
    .   vector<Point> locations;   // output, locations of non-zero pixels
    .   cv::findNonZero(binaryImage, locations);
    .   
    .   // access pixel coordinates
    .   Point pnt = locations[i];
    .   @endcode
    .   @param src single-channel array (type CV_8UC1)
    .   @param idx the output array, type of cv::Mat or std::vector<Point>, corresponding to non-zero indices in the input
    """
    pass

def findTransformECC(templateImage, inputImage, warpMatrix, motionType=None, criteria=None, inputMask=None): # real signature unknown; restored from __doc__
    """
    findTransformECC(templateImage, inputImage, warpMatrix[, motionType[, criteria[, inputMask]]]) -> retval, warpMatrix
    .   @brief Finds the geometric transform (warp) between two images in terms of the ECC criterion @cite EP08 .
    .   
    .   @param templateImage single-channel template image; CV_8U or CV_32F array.
    .   @param inputImage single-channel input image which should be warped with the final warpMatrix in
    .   order to provide an image similar to templateImage, same type as temlateImage.
    .   @param warpMatrix floating-point \f$2\times 3\f$ or \f$3\times 3\f$ mapping matrix (warp).
    .   @param motionType parameter, specifying the type of motion:
    .   -   **MOTION_TRANSLATION** sets a translational motion model; warpMatrix is \f$2\times 3\f$ with
    .   the first \f$2\times 2\f$ part being the unity matrix and the rest two parameters being
    .   estimated.
    .   -   **MOTION_EUCLIDEAN** sets a Euclidean (rigid) transformation as motion model; three
    .   parameters are estimated; warpMatrix is \f$2\times 3\f$.
    .   -   **MOTION_AFFINE** sets an affine motion model (DEFAULT); six parameters are estimated;
    .   warpMatrix is \f$2\times 3\f$.
    .   -   **MOTION_HOMOGRAPHY** sets a homography as a motion model; eight parameters are
    .   estimated;\`warpMatrix\` is \f$3\times 3\f$.
    .   @param criteria parameter, specifying the termination criteria of the ECC algorithm;
    .   criteria.epsilon defines the threshold of the increment in the correlation coefficient between two
    .   iterations (a negative criteria.epsilon makes criteria.maxcount the only termination criterion).
    .   Default values are shown in the declaration above.
    .   @param inputMask An optional mask to indicate valid values of inputImage.
    .   
    .   The function estimates the optimum transformation (warpMatrix) with respect to ECC criterion
    .   (@cite EP08), that is
    .   
    .   \f[\texttt{warpMatrix} = \texttt{warpMatrix} = \arg\max_{W} \texttt{ECC}(\texttt{templateImage}(x,y),\texttt{inputImage}(x',y'))\f]
    .   
    .   where
    .   
    .   \f[\begin{bmatrix} x' \\ y' \end{bmatrix} = W \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}\f]
    .   
    .   (the equation holds with homogeneous coordinates for homography). It returns the final enhanced
    .   correlation coefficient, that is the correlation coefficient between the template image and the
    .   final warped input image. When a \f$3\times 3\f$ matrix is given with motionType =0, 1 or 2, the third
    .   row is ignored.
    .   
    .   Unlike findHomography and estimateRigidTransform, the function findTransformECC implements an
    .   area-based alignment that builds on intensity similarities. In essence, the function updates the
    .   initial transformation that roughly aligns the images. If this information is missing, the identity
    .   warp (unity matrix) is used as an initialization. Note that if images undergo strong
    .   displacements/rotations, an initial transformation that roughly aligns the images is necessary
    .   (e.g., a simple euclidean/similarity transform that allows for the images showing the same image
    .   content approximately). Use inverse warping in the second image to take an image close to the first
    .   one, i.e. use the flag WARP_INVERSE_MAP with warpAffine or warpPerspective. See also the OpenCV
    .   sample image_alignment.cpp that demonstrates the use of the function. Note that the function throws
    .   an exception if algorithm does not converges.
    .   
    .   @sa
    .   estimateAffine2D, estimateAffinePartial2D, findHomography
    """
    pass

def fitEllipse(points): # real signature unknown; restored from __doc__
    """
    fitEllipse(points) -> retval
    .   @brief Fits an ellipse around a set of 2D points.
    .   
    .   The function calculates the ellipse that fits (in a least-squares sense) a set of 2D points best of
    .   all. It returns the rotated rectangle in which the ellipse is inscribed. The first algorithm described by @cite Fitzgibbon95
    .   is used. Developer should keep in mind that it is possible that the returned
    .   ellipse/rotatedRect data contains negative indices, due to the data points being close to the
    .   border of the containing Mat element.
    .   
    .   @param points Input 2D point set, stored in std::vector\<\> or Mat
    """
    pass

def fitLine(points, distType, param, reps, aeps, line=None): # real signature unknown; restored from __doc__
    """
    fitLine(points, distType, param, reps, aeps[, line]) -> line
    .   @brief Fits a line to a 2D or 3D point set.
    .   
    .   The function fitLine fits a line to a 2D or 3D point set by minimizing \f$\sum_i \rho(r_i)\f$ where
    .   \f$r_i\f$ is a distance between the \f$i^{th}\f$ point, the line and \f$\rho(r)\f$ is a distance function, one
    .   of the following:
    .   -  DIST_L2
    .   \f[\rho (r) = r^2/2  \quad \text{(the simplest and the fastest least-squares method)}\f]
    .   - DIST_L1
    .   \f[\rho (r) = r\f]
    .   - DIST_L12
    .   \f[\rho (r) = 2  \cdot ( \sqrt{1 + \frac{r^2}{2}} - 1)\f]
    .   - DIST_FAIR
    .   \f[\rho \left (r \right ) = C^2  \cdot \left (  \frac{r}{C} -  \log{\left(1 + \frac{r}{C}\right)} \right )  \quad \text{where} \quad C=1.3998\f]
    .   - DIST_WELSCH
    .   \f[\rho \left (r \right ) =  \frac{C^2}{2} \cdot \left ( 1 -  \exp{\left(-\left(\frac{r}{C}\right)^2\right)} \right )  \quad \text{where} \quad C=2.9846\f]
    .   - DIST_HUBER
    .   \f[\rho (r) =  \fork{r^2/2}{if \(r < C\)}{C \cdot (r-C/2)}{otherwise} \quad \text{where} \quad C=1.345\f]
    .   
    .   The algorithm is based on the M-estimator ( <http://en.wikipedia.org/wiki/M-estimator> ) technique
    .   that iteratively fits the line using the weighted least-squares algorithm. After each iteration the
    .   weights \f$w_i\f$ are adjusted to be inversely proportional to \f$\rho(r_i)\f$ .
    .   
    .   @param points Input vector of 2D or 3D points, stored in std::vector\<\> or Mat.
    .   @param line Output line parameters. In case of 2D fitting, it should be a vector of 4 elements
    .   (like Vec4f) - (vx, vy, x0, y0), where (vx, vy) is a normalized vector collinear to the line and
    .   (x0, y0) is a point on the line. In case of 3D fitting, it should be a vector of 6 elements (like
    .   Vec6f) - (vx, vy, vz, x0, y0, z0), where (vx, vy, vz) is a normalized vector collinear to the line
    .   and (x0, y0, z0) is a point on the line.
    .   @param distType Distance used by the M-estimator, see cv::DistanceTypes
    .   @param param Numerical parameter ( C ) for some types of distances. If it is 0, an optimal value
    .   is chosen.
    .   @param reps Sufficient accuracy for the radius (distance between the coordinate origin and the line).
    .   @param aeps Sufficient accuracy for the angle. 0.01 would be a good default value for reps and aeps.
    """
    pass

def FlannBasedMatcher(indexParams=None, searchParams=None): # real signature unknown; restored from __doc__
    """
    FlannBasedMatcher([, indexParams[, searchParams]]) -> <FlannBasedMatcher object>
    .
    """
    pass

def FlannBasedMatcher_create(): # real signature unknown; restored from __doc__
    """
    FlannBasedMatcher_create() -> retval
    .
    """
    pass

def flip(src, flipCode, dst=None): # real signature unknown; restored from __doc__
    """
    flip(src, flipCode[, dst]) -> dst
    .   @brief Flips a 2D array around vertical, horizontal, or both axes.
    .   
    .   The function cv::flip flips the array in one of three different ways (row
    .   and column indices are 0-based):
    .   \f[\texttt{dst} _{ij} =
    .   \left\{
    .   \begin{array}{l l}
    .   \texttt{src} _{\texttt{src.rows}-i-1,j} & if\;  \texttt{flipCode} = 0 \\
    .   \texttt{src} _{i, \texttt{src.cols} -j-1} & if\;  \texttt{flipCode} > 0 \\
    .   \texttt{src} _{ \texttt{src.rows} -i-1, \texttt{src.cols} -j-1} & if\; \texttt{flipCode} < 0 \\
    .   \end{array}
    .   \right.\f]
    .   The example scenarios of using the function are the following:
    .   *   Vertical flipping of the image (flipCode == 0) to switch between
    .   top-left and bottom-left image origin. This is a typical operation
    .   in video processing on Microsoft Windows\* OS.
    .   *   Horizontal flipping of the image with the subsequent horizontal
    .   shift and absolute difference calculation to check for a
    .   vertical-axis symmetry (flipCode \> 0).
    .   *   Simultaneous horizontal and vertical flipping of the image with
    .   the subsequent shift and absolute difference calculation to check
    .   for a central symmetry (flipCode \< 0).
    .   *   Reversing the order of point arrays (flipCode \> 0 or
    .   flipCode == 0).
    .   @param src input array.
    .   @param dst output array of the same size and type as src.
    .   @param flipCode a flag to specify how to flip the array; 0 means
    .   flipping around the x-axis and positive value (for example, 1) means
    .   flipping around y-axis. Negative value (for example, -1) means flipping
    .   around both axes.
    .   @sa transpose , repeat , completeSymm
    """
    pass

def floodFill(image, mask, seedPoint, newVal, loDiff=None, upDiff=None, flags=None): # real signature unknown; restored from __doc__
    """
    floodFill(image, mask, seedPoint, newVal[, loDiff[, upDiff[, flags]]]) -> retval, image, mask, rect
    .   @brief Fills a connected component with the given color.
    .   
    .   The function cv::floodFill fills a connected component starting from the seed point with the specified
    .   color. The connectivity is determined by the color/brightness closeness of the neighbor pixels. The
    .   pixel at \f$(x,y)\f$ is considered to belong to the repainted domain if:
    .   
    .   - in case of a grayscale image and floating range
    .   \f[\texttt{src} (x',y')- \texttt{loDiff} \leq \texttt{src} (x,y)  \leq \texttt{src} (x',y')+ \texttt{upDiff}\f]
    .   
    .   
    .   - in case of a grayscale image and fixed range
    .   \f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)- \texttt{loDiff} \leq \texttt{src} (x,y)  \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)+ \texttt{upDiff}\f]
    .   
    .   
    .   - in case of a color image and floating range
    .   \f[\texttt{src} (x',y')_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} (x',y')_r+ \texttt{upDiff} _r,\f]
    .   \f[\texttt{src} (x',y')_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} (x',y')_g+ \texttt{upDiff} _g\f]
    .   and
    .   \f[\texttt{src} (x',y')_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} (x',y')_b+ \texttt{upDiff} _b\f]
    .   
    .   
    .   - in case of a color image and fixed range
    .   \f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r+ \texttt{upDiff} _r,\f]
    .   \f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g+ \texttt{upDiff} _g\f]
    .   and
    .   \f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b+ \texttt{upDiff} _b\f]
    .   
    .   
    .   where \f$src(x',y')\f$ is the value of one of pixel neighbors that is already known to belong to the
    .   component. That is, to be added to the connected component, a color/brightness of the pixel should
    .   be close enough to:
    .   - Color/brightness of one of its neighbors that already belong to the connected component in case
    .   of a floating range.
    .   - Color/brightness of the seed point in case of a fixed range.
    .   
    .   Use these functions to either mark a connected component with the specified color in-place, or build
    .   a mask and then extract the contour, or copy the region to another image, and so on.
    .   
    .   @param image Input/output 1- or 3-channel, 8-bit, or floating-point image. It is modified by the
    .   function unless the FLOODFILL_MASK_ONLY flag is set in the second variant of the function. See
    .   the details below.
    .   @param mask Operation mask that should be a single-channel 8-bit image, 2 pixels wider and 2 pixels
    .   taller than image. Since this is both an input and output parameter, you must take responsibility
    .   of initializing it. Flood-filling cannot go across non-zero pixels in the input mask. For example,
    .   an edge detector output can be used as a mask to stop filling at edges. On output, pixels in the
    .   mask corresponding to filled pixels in the image are set to 1 or to the a value specified in flags
    .   as described below. It is therefore possible to use the same mask in multiple calls to the function
    .   to make sure the filled areas do not overlap.
    .   @param seedPoint Starting point.
    .   @param newVal New value of the repainted domain pixels.
    .   @param loDiff Maximal lower brightness/color difference between the currently observed pixel and
    .   one of its neighbors belonging to the component, or a seed pixel being added to the component.
    .   @param upDiff Maximal upper brightness/color difference between the currently observed pixel and
    .   one of its neighbors belonging to the component, or a seed pixel being added to the component.
    .   @param rect Optional output parameter set by the function to the minimum bounding rectangle of the
    .   repainted domain.
    .   @param flags Operation flags. The first 8 bits contain a connectivity value. The default value of
    .   4 means that only the four nearest neighbor pixels (those that share an edge) are considered. A
    .   connectivity value of 8 means that the eight nearest neighbor pixels (those that share a corner)
    .   will be considered. The next 8 bits (8-16) contain a value between 1 and 255 with which to fill
    .   the mask (the default value is 1). For example, 4 | ( 255 \<\< 8 ) will consider 4 nearest
    .   neighbours and fill the mask with a value of 255. The following additional options occupy higher
    .   bits and therefore may be further combined with the connectivity and mask fill values using
    .   bit-wise or (|), see cv::FloodFillFlags.
    .   
    .   @note Since the mask is larger than the filled image, a pixel \f$(x, y)\f$ in image corresponds to the
    .   pixel \f$(x+1, y+1)\f$ in the mask .
    .   
    .   @sa findContours
    """
    pass

def GaussianBlur(src, ksize, sigmaX, dst=None, sigmaY=None, borderType=None): # real signature unknown; restored from __doc__
    """
    GaussianBlur(src, ksize, sigmaX[, dst[, sigmaY[, borderType]]]) -> dst
    .   @brief Blurs an image using a Gaussian filter.
    .   
    .   The function convolves the source image with the specified Gaussian kernel. In-place filtering is
    .   supported.
    .   
    .   @param src input image; the image can have any number of channels, which are processed
    .   independently, but the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
    .   @param dst output image of the same size and type as src.
    .   @param ksize Gaussian kernel size. ksize.width and ksize.height can differ but they both must be
    .   positive and odd. Or, they can be zero's and then they are computed from sigma.
    .   @param sigmaX Gaussian kernel standard deviation in X direction.
    .   @param sigmaY Gaussian kernel standard deviation in Y direction; if sigmaY is zero, it is set to be
    .   equal to sigmaX, if both sigmas are zeros, they are computed from ksize.width and ksize.height,
    .   respectively (see cv::getGaussianKernel for details); to fully control the result regardless of
    .   possible future modifications of all this semantics, it is recommended to specify all of ksize,
    .   sigmaX, and sigmaY.
    .   @param borderType pixel extrapolation method, see cv::BorderTypes
    .   
    .   @sa  sepFilter2D, filter2D, blur, boxFilter, bilateralFilter, medianBlur
    """
    pass

def gemm(src1, src2, alpha, src3, beta, dst=None, flags=None): # real signature unknown; restored from __doc__
    """
    gemm(src1, src2, alpha, src3, beta[, dst[, flags]]) -> dst
    .   @brief Performs generalized matrix multiplication.
    .   
    .   The function cv::gemm performs generalized matrix multiplication similar to the
    .   gemm functions in BLAS level 3. For example,
    .   `gemm(src1, src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T)`
    .   corresponds to
    .   \f[\texttt{dst} =  \texttt{alpha} \cdot \texttt{src1} ^T  \cdot \texttt{src2} +  \texttt{beta} \cdot \texttt{src3} ^T\f]
    .   
    .   In case of complex (two-channel) data, performed a complex matrix
    .   multiplication.
    .   
    .   The function can be replaced with a matrix expression. For example, the
    .   above call can be replaced with:
    .   @code{.cpp}
    .   dst = alpha*src1.t()*src2 + beta*src3.t();
    .   @endcode
    .   @param src1 first multiplied input matrix that could be real(CV_32FC1,
    .   CV_64FC1) or complex(CV_32FC2, CV_64FC2).
    .   @param src2 second multiplied input matrix of the same type as src1.
    .   @param alpha weight of the matrix product.
    .   @param src3 third optional delta matrix added to the matrix product; it
    .   should have the same type as src1 and src2.
    .   @param beta weight of src3.
    .   @param dst output matrix; it has the proper size and the same type as
    .   input matrices.
    .   @param flags operation flags (cv::GemmFlags)
    .   @sa mulTransposed , transform
    """
    pass

def getAffineTransform(src, dst): # real signature unknown; restored from __doc__
    """
    getAffineTransform(src, dst) -> retval
    .
    """
    pass

def getBuildInformation(): # real signature unknown; restored from __doc__
    """
    getBuildInformation() -> retval
    .   @brief Returns full configuration time cmake output.
    .   
    .   Returned value is raw cmake output including version control system revision, compiler version,
    .   compiler flags, enabled modules and third party libraries, etc. Output format depends on target
    .   architecture.
    """
    pass

def getCPUTickCount(): # real signature unknown; restored from __doc__
    """
    getCPUTickCount() -> retval
    .   @brief Returns the number of CPU ticks.
    .   
    .   The function returns the current number of CPU ticks on some architectures (such as x86, x64,
    .   PowerPC). On other platforms the function is equivalent to getTickCount. It can also be used for
    .   very accurate time measurements, as well as for RNG initialization. Note that in case of multi-CPU
    .   systems a thread, from which getCPUTickCount is called, can be suspended and resumed at another CPU
    .   with its own counter. So, theoretically (and practically) the subsequent calls to the function do
    .   not necessary return the monotonously increasing values. Also, since a modern CPU varies the CPU
    .   frequency depending on the load, the number of CPU clocks spent in some code cannot be directly
    .   converted to time units. Therefore, getTickCount is generally a preferable solution for measuring
    .   execution time.
    """
    pass

def getDefaultNewCameraMatrix(cameraMatrix, imgsize=None, centerPrincipalPoint=None): # real signature unknown; restored from __doc__
    """
    getDefaultNewCameraMatrix(cameraMatrix[, imgsize[, centerPrincipalPoint]]) -> retval
    .   @brief Returns the default new camera matrix.
    .   
    .   The function returns the camera matrix that is either an exact copy of the input cameraMatrix (when
    .   centerPrinicipalPoint=false ), or the modified one (when centerPrincipalPoint=true).
    .   
    .   In the latter case, the new camera matrix will be:
    .   
    .   \f[\begin{bmatrix} f_x && 0 && ( \texttt{imgSize.width} -1)*0.5  \\ 0 && f_y && ( \texttt{imgSize.height} -1)*0.5  \\ 0 && 0 && 1 \end{bmatrix} ,\f]
    .   
    .   where \f$f_x\f$ and \f$f_y\f$ are \f$(0,0)\f$ and \f$(1,1)\f$ elements of cameraMatrix, respectively.
    .   
    .   By default, the undistortion functions in OpenCV (see initUndistortRectifyMap, undistort) do not
    .   move the principal point. However, when you work with stereo, it is important to move the principal
    .   points in both views to the same y-coordinate (which is required by most of stereo correspondence
    .   algorithms), and may be to the same x-coordinate too. So, you can form the new camera matrix for
    .   each view where the principal points are located at the center.
    .   
    .   @param cameraMatrix Input camera matrix.
    .   @param imgsize Camera view image size in pixels.
    .   @param centerPrincipalPoint Location of the principal point in the new camera matrix. The
    .   parameter indicates whether this location should be at the image center or not.
    """
    pass

def getDerivKernels(dx, dy, ksize, kx=None, ky=None, normalize=None, ktype=None): # real signature unknown; restored from __doc__
    """
    getDerivKernels(dx, dy, ksize[, kx[, ky[, normalize[, ktype]]]]) -> kx, ky
    .   @brief Returns filter coefficients for computing spatial image derivatives.
    .   
    .   The function computes and returns the filter coefficients for spatial image derivatives. When
    .   `ksize=CV_SCHARR`, the Scharr \f$3 \times 3\f$ kernels are generated (see cv::Scharr). Otherwise, Sobel
    .   kernels are generated (see cv::Sobel). The filters are normally passed to sepFilter2D or to
    .   
    .   @param kx Output matrix of row filter coefficients. It has the type ktype .
    .   @param ky Output matrix of column filter coefficients. It has the type ktype .
    .   @param dx Derivative order in respect of x.
    .   @param dy Derivative order in respect of y.
    .   @param ksize Aperture size. It can be CV_SCHARR, 1, 3, 5, or 7.
    .   @param normalize Flag indicating whether to normalize (scale down) the filter coefficients or not.
    .   Theoretically, the coefficients should have the denominator \f$=2^{ksize*2-dx-dy-2}\f$. If you are
    .   going to filter floating-point images, you are likely to use the normalized kernels. But if you
    .   compute derivatives of an 8-bit image, store the results in a 16-bit image, and wish to preserve
    .   all the fractional bits, you may want to set normalize=false .
    .   @param ktype Type of filter coefficients. It can be CV_32f or CV_64F .
    """
    pass

def getGaborKernel(ksize, sigma, theta, lambd, gamma, psi=None, ktype=None): # real signature unknown; restored from __doc__
    """
    getGaborKernel(ksize, sigma, theta, lambd, gamma[, psi[, ktype]]) -> retval
    .   @brief Returns Gabor filter coefficients.
    .   
    .   For more details about gabor filter equations and parameters, see: [Gabor
    .   Filter](http://en.wikipedia.org/wiki/Gabor_filter).
    .   
    .   @param ksize Size of the filter returned.
    .   @param sigma Standard deviation of the gaussian envelope.
    .   @param theta Orientation of the normal to the parallel stripes of a Gabor function.
    .   @param lambd Wavelength of the sinusoidal factor.
    .   @param gamma Spatial aspect ratio.
    .   @param psi Phase offset.
    .   @param ktype Type of filter coefficients. It can be CV_32F or CV_64F .
    """
    pass

def getGaussianKernel(ksize, sigma, ktype=None): # real signature unknown; restored from __doc__
    """
    getGaussianKernel(ksize, sigma[, ktype]) -> retval
    .   @brief Returns Gaussian filter coefficients.
    .   
    .   The function computes and returns the \f$\texttt{ksize} \times 1\f$ matrix of Gaussian filter
    .   coefficients:
    .   
    .   \f[G_i= \alpha *e^{-(i-( \texttt{ksize} -1)/2)^2/(2* \texttt{sigma}^2)},\f]
    .   
    .   where \f$i=0..\texttt{ksize}-1\f$ and \f$\alpha\f$ is the scale factor chosen so that \f$\sum_i G_i=1\f$.
    .   
    .   Two of such generated kernels can be passed to sepFilter2D. Those functions automatically recognize
    .   smoothing kernels (a symmetrical kernel with sum of weights equal to 1) and handle them accordingly.
    .   You may also use the higher-level GaussianBlur.
    .   @param ksize Aperture size. It should be odd ( \f$\texttt{ksize} \mod 2 = 1\f$ ) and positive.
    .   @param sigma Gaussian standard deviation. If it is non-positive, it is computed from ksize as
    .   `sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8`.
    .   @param ktype Type of filter coefficients. It can be CV_32F or CV_64F .
    .   @sa  sepFilter2D, getDerivKernels, getStructuringElement, GaussianBlur
    """
    pass

def getNumberOfCPUs(): # real signature unknown; restored from __doc__
    """
    getNumberOfCPUs() -> retval
    .   @brief Returns the number of logical CPUs available for the process.
    """
    pass

def getNumThreads(): # real signature unknown; restored from __doc__
    """
    getNumThreads() -> retval
    .   @brief Returns the number of threads used by OpenCV for parallel regions.
    .   
    .   Always returns 1 if OpenCV is built without threading support.
    .   
    .   The exact meaning of return value depends on the threading framework used by OpenCV library:
    .   - `TBB` - The number of threads, that OpenCV will try to use for parallel regions. If there is
    .   any tbb::thread_scheduler_init in user code conflicting with OpenCV, then function returns
    .   default number of threads used by TBB library.
    .   - `OpenMP` - An upper bound on the number of threads that could be used to form a new team.
    .   - `Concurrency` - The number of threads, that OpenCV will try to use for parallel regions.
    .   - `GCD` - Unsupported; returns the GCD thread pool limit (512) for compatibility.
    .   - `C=` - The number of threads, that OpenCV will try to use for parallel regions, if before
    .   called setNumThreads with threads \> 0, otherwise returns the number of logical CPUs,
    .   available for the process.
    .   @sa setNumThreads, getThreadNum
    """
    pass

def getOptimalDFTSize(vecsize): # real signature unknown; restored from __doc__
    """
    getOptimalDFTSize(vecsize) -> retval
    .   @brief Returns the optimal DFT size for a given vector size.
    .   
    .   DFT performance is not a monotonic function of a vector size. Therefore, when you calculate
    .   convolution of two arrays or perform the spectral analysis of an array, it usually makes sense to
    .   pad the input data with zeros to get a bit larger array that can be transformed much faster than the
    .   original one. Arrays whose size is a power-of-two (2, 4, 8, 16, 32, ...) are the fastest to process.
    .   Though, the arrays whose size is a product of 2's, 3's, and 5's (for example, 300 = 5\*5\*3\*2\*2)
    .   are also processed quite efficiently.
    .   
    .   The function cv::getOptimalDFTSize returns the minimum number N that is greater than or equal to vecsize
    .   so that the DFT of a vector of size N can be processed efficiently. In the current implementation N
    .   = 2 ^p^ \* 3 ^q^ \* 5 ^r^ for some integer p, q, r.
    .   
    .   The function returns a negative number if vecsize is too large (very close to INT_MAX ).
    .   
    .   While the function cannot be used directly to estimate the optimal vector size for DCT transform
    .   (since the current DCT implementation supports only even-size vectors), it can be easily processed
    .   as getOptimalDFTSize((vecsize+1)/2)\*2.
    .   @param vecsize vector size.
    .   @sa dft , dct , idft , idct , mulSpectrums
    """
    pass

def getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, imageSize, alpha, newImgSize=None, centerPrincipalPoint=None): # real signature unknown; restored from __doc__
    """
    getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, imageSize, alpha[, newImgSize[, centerPrincipalPoint]]) -> retval, validPixROI
    .   @brief Returns the new camera matrix based on the free scaling parameter.
    .   
    .   @param cameraMatrix Input camera matrix.
    .   @param distCoeffs Input vector of distortion coefficients
    .   \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
    .   4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are
    .   assumed.
    .   @param imageSize Original image size.
    .   @param alpha Free scaling parameter between 0 (when all the pixels in the undistorted image are
    .   valid) and 1 (when all the source image pixels are retained in the undistorted image). See
    .   stereoRectify for details.
    .   @param newImgSize Image size after rectification. By default,it is set to imageSize .
    .   @param validPixROI Optional output rectangle that outlines all-good-pixels region in the
    .   undistorted image. See roi1, roi2 description in stereoRectify .
    .   @param centerPrincipalPoint Optional flag that indicates whether in the new camera matrix the
    .   principal point should be at the image center or not. By default, the principal point is chosen to
    .   best fit a subset of the source image (determined by alpha) to the corrected image.
    .   @return new_camera_matrix Output new camera matrix.
    .   
    .   The function computes and returns the optimal new camera matrix based on the free scaling parameter.
    .   By varying this parameter, you may retrieve only sensible pixels alpha=0 , keep all the original
    .   image pixels if there is valuable information in the corners alpha=1 , or get something in between.
    .   When alpha\>0 , the undistortion result is likely to have some black pixels corresponding to
    .   "virtual" pixels outside of the captured distorted image. The original camera matrix, distortion
    .   coefficients, the computed new camera matrix, and newImageSize should be passed to
    .   initUndistortRectifyMap to produce the maps for remap .
    """
    pass

def getPerspectiveTransform(src, dst): # real signature unknown; restored from __doc__
    """
    getPerspectiveTransform(src, dst) -> retval
    .   @brief Calculates a perspective transform from four pairs of the corresponding points.
    .   
    .   The function calculates the \f$3 \times 3\f$ matrix of a perspective transform so that:
    .   
    .   \f[\begin{bmatrix} t_i x'_i \\ t_i y'_i \\ t_i \end{bmatrix} = \texttt{map_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\f]
    .   
    .   where
    .   
    .   \f[dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2,3\f]
    .   
    .   @param src Coordinates of quadrangle vertices in the source image.
    .   @param dst Coordinates of the corresponding quadrangle vertices in the destination image.
    .   
    .   @sa  findHomography, warpPerspective, perspectiveTransform
    """
    pass

def getRectSubPix(image, patchSize, center, patch=None, patchType=None): # real signature unknown; restored from __doc__
    """
    getRectSubPix(image, patchSize, center[, patch[, patchType]]) -> patch
    .   @brief Retrieves a pixel rectangle from an image with sub-pixel accuracy.
    .   
    .   The function getRectSubPix extracts pixels from src:
    .   
    .   \f[dst(x, y) = src(x +  \texttt{center.x} - ( \texttt{dst.cols} -1)*0.5, y +  \texttt{center.y} - ( \texttt{dst.rows} -1)*0.5)\f]
    .   
    .   where the values of the pixels at non-integer coordinates are retrieved using bilinear
    .   interpolation. Every channel of multi-channel images is processed independently. While the center of
    .   the rectangle must be inside the image, parts of the rectangle may be outside. In this case, the
    .   replication border mode (see cv::BorderTypes) is used to extrapolate the pixel values outside of
    .   the image.
    .   
    .   @param image Source image.
    .   @param patchSize Size of the extracted patch.
    .   @param center Floating point coordinates of the center of the extracted rectangle within the
    .   source image. The center must be inside the image.
    .   @param patch Extracted patch that has the size patchSize and the same number of channels as src .
    .   @param patchType Depth of the extracted pixels. By default, they have the same depth as src .
    .   
    .   @sa  warpAffine, warpPerspective
    """
    pass

def getRotationMatrix2D(center, angle, scale): # real signature unknown; restored from __doc__
    """
    getRotationMatrix2D(center, angle, scale) -> retval
    .   @brief Calculates an affine matrix of 2D rotation.
    .   
    .   The function calculates the following matrix:
    .   
    .   \f[\begin{bmatrix} \alpha &  \beta & (1- \alpha )  \cdot \texttt{center.x} -  \beta \cdot \texttt{center.y} \\ - \beta &  \alpha &  \beta \cdot \texttt{center.x} + (1- \alpha )  \cdot \texttt{center.y} \end{bmatrix}\f]
    .   
    .   where
    .   
    .   \f[\begin{array}{l} \alpha =  \texttt{scale} \cdot \cos \texttt{angle} , \\ \beta =  \texttt{scale} \cdot \sin \texttt{angle} \end{array}\f]
    .   
    .   The transformation maps the rotation center to itself. If this is not the target, adjust the shift.
    .   
    .   @param center Center of the rotation in the source image.
    .   @param angle Rotation angle in degrees. Positive values mean counter-clockwise rotation (the
    .   coordinate origin is assumed to be the top-left corner).
    .   @param scale Isotropic scale factor.
    .   
    .   @sa  getAffineTransform, warpAffine, transform
    """
    pass

def getStructuringElement(shape, ksize, anchor=None): # real signature unknown; restored from __doc__
    """
    getStructuringElement(shape, ksize[, anchor]) -> retval
    .   @brief Returns a structuring element of the specified size and shape for morphological operations.
    .   
    .   The function constructs and returns the structuring element that can be further passed to cv::erode,
    .   cv::dilate or cv::morphologyEx. But you can also construct an arbitrary binary mask yourself and use it as
    .   the structuring element.
    .   
    .   @param shape Element shape that could be one of cv::MorphShapes
    .   @param ksize Size of the structuring element.
    .   @param anchor Anchor position within the element. The default value \f$(-1, -1)\f$ means that the
    .   anchor is at the center. Note that only the shape of a cross-shaped element depends on the anchor
    .   position. In other cases the anchor just regulates how much the result of the morphological
    .   operation is shifted.
    """
    pass

def getTextSize(text, fontFace, fontScale, thickness): # real signature unknown; restored from __doc__
    """
    getTextSize(text, fontFace, fontScale, thickness) -> retval, baseLine
    .   @brief Calculates the width and height of a text string.
    .   
    .   The function getTextSize calculates and returns the size of a box that contains the specified text.
    .   That is, the following code renders some text, the tight box surrounding it, and the baseline: :
    .   @code
    .   String text = "Funny text inside the box";
    .   int fontFace = FONT_HERSHEY_SCRIPT_SIMPLEX;
    .   double fontScale = 2;
    .   int thickness = 3;
    .   
    .   Mat img(600, 800, CV_8UC3, Scalar::all(0));
    .   
    .   int baseline=0;
    .   Size textSize = getTextSize(text, fontFace,
    .   fontScale, thickness, &baseline);
    .   baseline += thickness;
    .   
    .   // center the text
    .   Point textOrg((img.cols - textSize.width)/2,
    .   (img.rows + textSize.height)/2);
    .   
    .   // draw the box
    .   rectangle(img, textOrg + Point(0, baseline),
    .   textOrg + Point(textSize.width, -textSize.height),
    .   Scalar(0,0,255));
    .   // ... and the baseline first
    .   line(img, textOrg + Point(0, thickness),
    .   textOrg + Point(textSize.width, thickness),
    .   Scalar(0, 0, 255));
    .   
    .   // then put the text itself
    .   putText(img, text, textOrg, fontFace, fontScale,
    .   Scalar::all(255), thickness, 8);
    .   @endcode
    .   
    .   @param text Input text string.
    .   @param fontFace Font to use, see cv::HersheyFonts.
    .   @param fontScale Font scale factor that is multiplied by the font-specific base size.
    .   @param thickness Thickness of lines used to render the text. See putText for details.
    .   @param[out] baseLine y-coordinate of the baseline relative to the bottom-most text
    .   point.
    .   @return The size of a box that contains the specified text.
    .   
    .   @see cv::putText
    """
    pass

def getThreadNum(): # real signature unknown; restored from __doc__
    """
    getThreadNum() -> retval
    .   @brief Returns the index of the currently executed thread within the current parallel region. Always
    .   returns 0 if called outside of parallel region.
    .   
    .   The exact meaning of return value depends on the threading framework used by OpenCV library:
    .   - `TBB` - Unsupported with current 4.1 TBB release. Maybe will be supported in future.
    .   - `OpenMP` - The thread number, within the current team, of the calling thread.
    .   - `Concurrency` - An ID for the virtual processor that the current context is executing on (0
    .   for master thread and unique number for others, but not necessary 1,2,3,...).
    .   - `GCD` - System calling thread's ID. Never returns 0 inside parallel region.
    .   - `C=` - The index of the current parallel task.
    .   @sa setNumThreads, getNumThreads
    """
    pass

def getTickCount(): # real signature unknown; restored from __doc__
    """
    getTickCount() -> retval
    .   @brief Returns the number of ticks.
    .   
    .   The function returns the number of ticks after the certain event (for example, when the machine was
    .   turned on). It can be used to initialize RNG or to measure a function execution time by reading the
    .   tick count before and after the function call.
    .   @sa getTickFrequency, TickMeter
    """
    pass

def getTickFrequency(): # real signature unknown; restored from __doc__
    """
    getTickFrequency() -> retval
    .   @brief Returns the number of ticks per second.
    .   
    .   The function returns the number of ticks per second. That is, the following code computes the
    .   execution time in seconds:
    .   @code
    .   double t = (double)getTickCount();
    .   // do something ...
    .   t = ((double)getTickCount() - t)/getTickFrequency();
    .   @endcode
    .   @sa getTickCount, TickMeter
    """
    pass

def getTrackbarPos(trackbarname, winname): # real signature unknown; restored from __doc__
    """
    getTrackbarPos(trackbarname, winname) -> retval
    .   @brief Returns the trackbar position.
    .   
    .   The function returns the current position of the specified trackbar.
    .   
    .   @note
    .   
    .   [__Qt Backend Only__] winname can be empty (or NULL) if the trackbar is attached to the control
    .   panel.
    .   
    .   @param trackbarname Name of the trackbar.
    .   @param winname Name of the window that is the parent of the trackbar.
    """
    pass

def getValidDisparityROI(roi1, roi2, minDisparity, numberOfDisparities, SADWindowSize): # real signature unknown; restored from __doc__
    """
    getValidDisparityROI(roi1, roi2, minDisparity, numberOfDisparities, SADWindowSize) -> retval
    .
    """
    pass

def getWindowProperty(winname, prop_id): # real signature unknown; restored from __doc__
    """
    getWindowProperty(winname, prop_id) -> retval
    .   @brief Provides parameters of a window.
    .   
    .   The function getWindowProperty returns properties of a window.
    .   
    .   @param winname Name of the window.
    .   @param prop_id Window property to retrieve. The following operation flags are available: (cv::WindowPropertyFlags)
    .   
    .   @sa setWindowProperty
    """
    pass

def GFTTDetector_create(maxCorners=None, qualityLevel=None, minDistance=None, blockSize=None, useHarrisDetector=None, k=None): # real signature unknown; restored from __doc__
    """
    GFTTDetector_create([, maxCorners[, qualityLevel[, minDistance[, blockSize[, useHarrisDetector[, k]]]]]]) -> retval
    .
    """
    pass

def goodFeaturesToTrack(image, maxCorners, qualityLevel, minDistance, corners=None, mask=None, blockSize=None, useHarrisDetector=None, k=None): # real signature unknown; restored from __doc__
    """
    goodFeaturesToTrack(image, maxCorners, qualityLevel, minDistance[, corners[, mask[, blockSize[, useHarrisDetector[, k]]]]]) -> corners
    .   @brief Determines strong corners on an image.
    .   
    .   The function finds the most prominent corners in the image or in the specified image region, as
    .   described in @cite Shi94
    .   
    .   -   Function calculates the corner quality measure at every source image pixel using the
    .   cornerMinEigenVal or cornerHarris .
    .   -   Function performs a non-maximum suppression (the local maximums in *3 x 3* neighborhood are
    .   retained).
    .   -   The corners with the minimal eigenvalue less than
    .   \f$\texttt{qualityLevel} \cdot \max_{x,y} qualityMeasureMap(x,y)\f$ are rejected.
    .   -   The remaining corners are sorted by the quality measure in the descending order.
    .   -   Function throws away each corner for which there is a stronger corner at a distance less than
    .   maxDistance.
    .   
    .   The function can be used to initialize a point-based tracker of an object.
    .   
    .   @note If the function is called with different values A and B of the parameter qualityLevel , and
    .   A \> B, the vector of returned corners with qualityLevel=A will be the prefix of the output vector
    .   with qualityLevel=B .
    .   
    .   @param image Input 8-bit or floating-point 32-bit, single-channel image.
    .   @param corners Output vector of detected corners.
    .   @param maxCorners Maximum number of corners to return. If there are more corners than are found,
    .   the strongest of them is returned. `maxCorners <= 0` implies that no limit on the maximum is set
    .   and all detected corners are returned.
    .   @param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
    .   parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
    .   (see cornerMinEigenVal ) or the Harris function response (see cornerHarris ). The corners with the
    .   quality measure less than the product are rejected. For example, if the best corner has the
    .   quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
    .   less than 15 are rejected.
    .   @param minDistance Minimum possible Euclidean distance between the returned corners.
    .   @param mask Optional region of interest. If the image is not empty (it needs to have the type
    .   CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
    .   @param blockSize Size of an average block for computing a derivative covariation matrix over each
    .   pixel neighborhood. See cornerEigenValsAndVecs .
    .   @param useHarrisDetector Parameter indicating whether to use a Harris detector (see cornerHarris)
    .   or cornerMinEigenVal.
    .   @param k Free parameter of the Harris detector.
    .   
    .   @sa  cornerMinEigenVal, cornerHarris, calcOpticalFlowPyrLK, estimateRigidTransform,
    """
    pass

def grabCut(img, mask, rect, bgdModel, fgdModel, iterCount, mode=None): # real signature unknown; restored from __doc__
    """
    grabCut(img, mask, rect, bgdModel, fgdModel, iterCount[, mode]) -> mask, bgdModel, fgdModel
    .   @brief Runs the GrabCut algorithm.
    .   
    .   The function implements the [GrabCut image segmentation algorithm](http://en.wikipedia.org/wiki/GrabCut).
    .   
    .   @param img Input 8-bit 3-channel image.
    .   @param mask Input/output 8-bit single-channel mask. The mask is initialized by the function when
    .   mode is set to GC_INIT_WITH_RECT. Its elements may have one of the cv::GrabCutClasses.
    .   @param rect ROI containing a segmented object. The pixels outside of the ROI are marked as
    .   "obvious background". The parameter is only used when mode==GC_INIT_WITH_RECT .
    .   @param bgdModel Temporary array for the background model. Do not modify it while you are
    .   processing the same image.
    .   @param fgdModel Temporary arrays for the foreground model. Do not modify it while you are
    .   processing the same image.
    .   @param iterCount Number of iterations the algorithm should make before returning the result. Note
    .   that the result can be refined with further calls with mode==GC_INIT_WITH_MASK or
    .   mode==GC_EVAL .
    .   @param mode Operation mode that could be one of the cv::GrabCutModes
    """
    pass

def groupRectangles(rectList, groupThreshold, eps=None): # real signature unknown; restored from __doc__
    """
    groupRectangles(rectList, groupThreshold[, eps]) -> rectList, weights
    .   @overload
    """
    pass

def haveOpenVX(): # real signature unknown; restored from __doc__
    """
    haveOpenVX() -> retval
    .
    """
    pass

def hconcat(src, dst=None): # real signature unknown; restored from __doc__
    """
    hconcat(src[, dst]) -> dst
    .   @overload
    .   @code{.cpp}
    .   std::vector<cv::Mat> matrices = { cv::Mat(4, 1, CV_8UC1, cv::Scalar(1)),
    .   cv::Mat(4, 1, CV_8UC1, cv::Scalar(2)),
    .   cv::Mat(4, 1, CV_8UC1, cv::Scalar(3)),};
    .   
    .   cv::Mat out;
    .   cv::hconcat( matrices, out );
    .   //out:
    .   //[1, 2, 3;
    .   // 1, 2, 3;
    .   // 1, 2, 3;
    .   // 1, 2, 3]
    .   @endcode
    .   @param src input array or vector of matrices. all of the matrices must have the same number of rows and the same depth.
    .   @param dst output array. It has the same number of rows and depth as the src, and the sum of cols of the src.
    .   same depth.
    """
    pass

def HOGDescriptor(): # real signature unknown; restored from __doc__
    """
    HOGDescriptor() -> <HOGDescriptor object>
    .   
    
    
    
    HOGDescriptor(_winSize, _blockSize, _blockStride, _cellSize, _nbins[, _derivAperture[, _winSigma[, _histogramNormType[, _L2HysThreshold[, _gammaCorrection[, _nlevels[, _signedGradient]]]]]]]) -> <HOGDescriptor object>
    .   
    
    
    
    HOGDescriptor(filename) -> <HOGDescriptor object>
    .
    """
    pass

def HOGDescriptor_getDaimlerPeopleDetector(): # real signature unknown; restored from __doc__
    """
    HOGDescriptor_getDaimlerPeopleDetector() -> retval
    .
    """
    pass

def HOGDescriptor_getDefaultPeopleDetector(): # real signature unknown; restored from __doc__
    """
    HOGDescriptor_getDefaultPeopleDetector() -> retval
    .
    """
    pass

def HoughCircles(image, method, dp, minDist, circles=None, param1=None, param2=None, minRadius=None, maxRadius=None): # real signature unknown; restored from __doc__
    """
    HoughCircles(image, method, dp, minDist[, circles[, param1[, param2[, minRadius[, maxRadius]]]]]) -> circles
    .   @brief Finds circles in a grayscale image using the Hough transform.
    .   
    .   The function finds circles in a grayscale image using a modification of the Hough transform.
    .   
    .   Example: :
    .   @code
    .   #include <opencv2/imgproc.hpp>
    .   #include <opencv2/highgui.hpp>
    .   #include <math.h>
    .   
    .   using namespace cv;
    .   using namespace std;
    .   
    .   int main(int argc, char** argv)
    .   {
    .   Mat img, gray;
    .   if( argc != 2 || !(img=imread(argv[1], 1)).data)
    .   return -1;
    .   cvtColor(img, gray, COLOR_BGR2GRAY);
    .   // smooth it, otherwise a lot of false circles may be detected
    .   GaussianBlur( gray, gray, Size(9, 9), 2, 2 );
    .   vector<Vec3f> circles;
    .   HoughCircles(gray, circles, HOUGH_GRADIENT,
    .   2, gray.rows/4, 200, 100 );
    .   for( size_t i = 0; i < circles.size(); i++ )
    .   {
    .   Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
    .   int radius = cvRound(circles[i][2]);
    .   // draw the circle center
    .   circle( img, center, 3, Scalar(0,255,0), -1, 8, 0 );
    .   // draw the circle outline
    .   circle( img, center, radius, Scalar(0,0,255), 3, 8, 0 );
    .   }
    .   namedWindow( "circles", 1 );
    .   imshow( "circles", img );
    .   
    .   waitKey(0);
    .   return 0;
    .   }
    .   @endcode
    .   
    .   @note Usually the function detects the centers of circles well. However, it may fail to find correct
    .   radii. You can assist to the function by specifying the radius range ( minRadius and maxRadius ) if
    .   you know it. Or, you may ignore the returned radius, use only the center, and find the correct
    .   radius using an additional procedure.
    .   
    .   @param image 8-bit, single-channel, grayscale input image.
    .   @param circles Output vector of found circles. Each vector is encoded as a 3-element
    .   floating-point vector \f$(x, y, radius)\f$ .
    .   @param method Detection method, see cv::HoughModes. Currently, the only implemented method is HOUGH_GRADIENT
    .   @param dp Inverse ratio of the accumulator resolution to the image resolution. For example, if
    .   dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has
    .   half as big width and height.
    .   @param minDist Minimum distance between the centers of the detected circles. If the parameter is
    .   too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is
    .   too large, some circles may be missed.
    .   @param param1 First method-specific parameter. In case of CV_HOUGH_GRADIENT , it is the higher
    .   threshold of the two passed to the Canny edge detector (the lower one is twice smaller).
    .   @param param2 Second method-specific parameter. In case of CV_HOUGH_GRADIENT , it is the
    .   accumulator threshold for the circle centers at the detection stage. The smaller it is, the more
    .   false circles may be detected. Circles, corresponding to the larger accumulator values, will be
    .   returned first.
    .   @param minRadius Minimum circle radius.
    .   @param maxRadius Maximum circle radius.
    .   
    .   @sa fitEllipse, minEnclosingCircle
    """
    pass

def HoughLines(image, rho, theta, threshold, lines=None, srn=None, stn=None, min_theta=None, max_theta=None): # real signature unknown; restored from __doc__
    """
    HoughLines(image, rho, theta, threshold[, lines[, srn[, stn[, min_theta[, max_theta]]]]]) -> lines
    .   @brief Finds lines in a binary image using the standard Hough transform.
    .   
    .   The function implements the standard or standard multi-scale Hough transform algorithm for line
    .   detection. See <http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm> for a good explanation of Hough
    .   transform.
    .   
    .   @param image 8-bit, single-channel binary source image. The image may be modified by the function.
    .   @param lines Output vector of lines. Each line is represented by a two-element vector
    .   \f$(\rho, \theta)\f$ . \f$\rho\f$ is the distance from the coordinate origin \f$(0,0)\f$ (top-left corner of
    .   the image). \f$\theta\f$ is the line rotation angle in radians (
    .   \f$0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\f$ ).
    .   @param rho Distance resolution of the accumulator in pixels.
    .   @param theta Angle resolution of the accumulator in radians.
    .   @param threshold Accumulator threshold parameter. Only those lines are returned that get enough
    .   votes ( \f$>\texttt{threshold}\f$ ).
    .   @param srn For the multi-scale Hough transform, it is a divisor for the distance resolution rho .
    .   The coarse accumulator distance resolution is rho and the accurate accumulator resolution is
    .   rho/srn . If both srn=0 and stn=0 , the classical Hough transform is used. Otherwise, both these
    .   parameters should be positive.
    .   @param stn For the multi-scale Hough transform, it is a divisor for the distance resolution theta.
    .   @param min_theta For standard and multi-scale Hough transform, minimum angle to check for lines.
    .   Must fall between 0 and max_theta.
    .   @param max_theta For standard and multi-scale Hough transform, maximum angle to check for lines.
    .   Must fall between min_theta and CV_PI.
    """
    pass

def HoughLinesP(image, rho, theta, threshold, lines=None, minLineLength=None, maxLineGap=None): # real signature unknown; restored from __doc__
    """
    HoughLinesP(image, rho, theta, threshold[, lines[, minLineLength[, maxLineGap]]]) -> lines
    .   @brief Finds line segments in a binary image using the probabilistic Hough transform.
    .   
    .   The function implements the probabilistic Hough transform algorithm for line detection, described
    .   in @cite Matas00
    .   
    .   See the line detection example below:
    .   
    .   @code
    .   #include <opencv2/imgproc.hpp>
    .   #include <opencv2/highgui.hpp>
    .   
    .   using namespace cv;
    .   using namespace std;
    .   
    .   int main(int argc, char** argv)
    .   {
    .   Mat src, dst, color_dst;
    .   if( argc != 2 || !(src=imread(argv[1], 0)).data)
    .   return -1;
    .   
    .   Canny( src, dst, 50, 200, 3 );
    .   cvtColor( dst, color_dst, COLOR_GRAY2BGR );
    .   
    .   #if 0
    .   vector<Vec2f> lines;
    .   HoughLines( dst, lines, 1, CV_PI/180, 100 );
    .   
    .   for( size_t i = 0; i < lines.size(); i++ )
    .   {
    .   float rho = lines[i][0];
    .   float theta = lines[i][1];
    .   double a = cos(theta), b = sin(theta);
    .   double x0 = a*rho, y0 = b*rho;
    .   Point pt1(cvRound(x0 + 1000*(-b)),
    .   cvRound(y0 + 1000*(a)));
    .   Point pt2(cvRound(x0 - 1000*(-b)),
    .   cvRound(y0 - 1000*(a)));
    .   line( color_dst, pt1, pt2, Scalar(0,0,255), 3, 8 );
    .   }
    .   #else
    .   vector<Vec4i> lines;
    .   HoughLinesP( dst, lines, 1, CV_PI/180, 80, 30, 10 );
    .   for( size_t i = 0; i < lines.size(); i++ )
    .   {
    .   line( color_dst, Point(lines[i][0], lines[i][1]),
    .   Point(lines[i][2], lines[i][3]), Scalar(0,0,255), 3, 8 );
    .   }
    .   #endif
    .   namedWindow( "Source", 1 );
    .   imshow( "Source", src );
    .   
    .   namedWindow( "Detected Lines", 1 );
    .   imshow( "Detected Lines", color_dst );
    .   
    .   waitKey(0);
    .   return 0;
    .   }
    .   @endcode
    .   This is a sample picture the function parameters have been tuned for:
    .   
    .   ![image](pics/building.jpg)
    .   
    .   And this is the output of the above program in case of the probabilistic Hough transform:
    .   
    .   ![image](pics/houghp.png)
    .   
    .   @param image 8-bit, single-channel binary source image. The image may be modified by the function.
    .   @param lines Output vector of lines. Each line is represented by a 4-element vector
    .   \f$(x_1, y_1, x_2, y_2)\f$ , where \f$(x_1,y_1)\f$ and \f$(x_2, y_2)\f$ are the ending points of each detected
    .   line segment.
    .   @param rho Distance resolution of the accumulator in pixels.
    .   @param theta Angle resolution of the accumulator in radians.
    .   @param threshold Accumulator threshold parameter. Only those lines are returned that get enough
    .   votes ( \f$>\texttt{threshold}\f$ ).
    .   @param minLineLength Minimum line length. Line segments shorter than that are rejected.
    .   @param maxLineGap Maximum allowed gap between points on the same line to link them.
    .   
    .   @sa LineSegmentDetector
    """
    pass

def HuMoments(m, hu=None): # real signature unknown; restored from __doc__
    """
    HuMoments(m[, hu]) -> hu
    .   @overload
    """
    pass

def idct(src, dst=None, flags=None): # real signature unknown; restored from __doc__
    """
    idct(src[, dst[, flags]]) -> dst
    .   @brief Calculates the inverse Discrete Cosine Transform of a 1D or 2D array.
    .   
    .   idct(src, dst, flags) is equivalent to dct(src, dst, flags | DCT_INVERSE).
    .   @param src input floating-point single-channel array.
    .   @param dst output array of the same size and type as src.
    .   @param flags operation flags.
    .   @sa  dct, dft, idft, getOptimalDFTSize
    """
    pass

def idft(src, dst=None, flags=None, nonzeroRows=None): # real signature unknown; restored from __doc__
    """
    idft(src[, dst[, flags[, nonzeroRows]]]) -> dst
    .   @brief Calculates the inverse Discrete Fourier Transform of a 1D or 2D array.
    .   
    .   idft(src, dst, flags) is equivalent to dft(src, dst, flags | DFT_INVERSE) .
    .   @note None of dft and idft scales the result by default. So, you should pass DFT_SCALE to one of
    .   dft or idft explicitly to make these transforms mutually inverse.
    .   @sa dft, dct, idct, mulSpectrums, getOptimalDFTSize
    .   @param src input floating-point real or complex array.
    .   @param dst output array whose size and type depend on the flags.
    .   @param flags operation flags (see dft and cv::DftFlags).
    .   @param nonzeroRows number of dst rows to process; the rest of the rows have undefined content (see
    .   the convolution sample in dft description.
    """
    pass

def illuminationChange(src, mask, dst=None, alpha=None, beta=None): # real signature unknown; restored from __doc__
    """
    illuminationChange(src, mask[, dst[, alpha[, beta]]]) -> dst
    .   @brief Applying an appropriate non-linear transformation to the gradient field inside the selection and
    .   then integrating back with a Poisson solver, modifies locally the apparent illumination of an image.
    .   
    .   @param src Input 8-bit 3-channel image.
    .   @param mask Input 8-bit 1 or 3-channel image.
    .   @param dst Output image with the same size and type as src.
    .   @param alpha Value ranges between 0-2.
    .   @param beta Value ranges between 0-2.
    .   
    .   This is useful to highlight under-exposed foreground objects or to reduce specular reflections.
    """
    pass

def imdecode(buf, flags): # real signature unknown; restored from __doc__
    """
    imdecode(buf, flags) -> retval
    .   @brief Reads an image from a buffer in memory.
    .   
    .   The function imdecode reads an image from the specified buffer in the memory. If the buffer is too short or
    .   contains invalid data, the function returns an empty matrix ( Mat::data==NULL ).
    .   
    .   See cv::imread for the list of supported formats and flags description.
    .   
    .   @note In the case of color images, the decoded images will have the channels stored in **B G R** order.
    .   @param buf Input array or vector of bytes.
    .   @param flags The same flags as in cv::imread, see cv::ImreadModes.
    """
    pass

def imencode(ext, img, params=None): # real signature unknown; restored from __doc__
    """
    imencode(ext, img[, params]) -> retval, buf
    .   @brief Encodes an image into a memory buffer.
    .   
    .   The function imencode compresses the image and stores it in the memory buffer that is resized to fit the
    .   result. See cv::imwrite for the list of supported formats and flags description.
    .   
    .   @param ext File extension that defines the output format.
    .   @param img Image to be written.
    .   @param buf Output buffer resized to fit the compressed image.
    .   @param params Format-specific parameters. See cv::imwrite and cv::ImwriteFlags.
    """
    pass

def imread(filename, flags=None): # real signature unknown; restored from __doc__
    """
    imread(filename[, flags]) -> retval
    .   @brief Loads an image from a file.
    .   
    .   @anchor imread
    .   
    .   The function imread loads an image from the specified file and returns it. If the image cannot be
    .   read (because of missing file, improper permissions, unsupported or invalid format), the function
    .   returns an empty matrix ( Mat::data==NULL ).
    .   
    .   Currently, the following file formats are supported:
    .   
    .   -   Windows bitmaps - \*.bmp, \*.dib (always supported)
    .   -   JPEG files - \*.jpeg, \*.jpg, \*.jpe (see the *Notes* section)
    .   -   JPEG 2000 files - \*.jp2 (see the *Notes* section)
    .   -   Portable Network Graphics - \*.png (see the *Notes* section)
    .   -   WebP - \*.webp (see the *Notes* section)
    .   -   Portable image format - \*.pbm, \*.pgm, \*.ppm \*.pxm, \*.pnm (always supported)
    .   -   Sun rasters - \*.sr, \*.ras (always supported)
    .   -   TIFF files - \*.tiff, \*.tif (see the *Notes* section)
    .   -   OpenEXR Image files - \*.exr (see the *Notes* section)
    .   -   Radiance HDR - \*.hdr, \*.pic (always supported)
    .   -   Raster and Vector geospatial data supported by Gdal (see the *Notes* section)
    .   
    .   @note
    .   
    .   -   The function determines the type of an image by the content, not by the file extension.
    .   -   In the case of color images, the decoded images will have the channels stored in **B G R** order.
    .   -   On Microsoft Windows\* OS and MacOSX\*, the codecs shipped with an OpenCV image (libjpeg,
    .   libpng, libtiff, and libjasper) are used by default. So, OpenCV can always read JPEGs, PNGs,
    .   and TIFFs. On MacOSX, there is also an option to use native MacOSX image readers. But beware
    .   that currently these native image loaders give images with different pixel values because of
    .   the color management embedded into MacOSX.
    .   -   On Linux\*, BSD flavors and other Unix-like open-source operating systems, OpenCV looks for
    .   codecs supplied with an OS image. Install the relevant packages (do not forget the development
    .   files, for example, "libjpeg-dev", in Debian\* and Ubuntu\*) to get the codec support or turn
    .   on the OPENCV_BUILD_3RDPARTY_LIBS flag in CMake.
    .   -   In the case you set *WITH_GDAL* flag to true in CMake and @ref IMREAD_LOAD_GDAL to load the image,
    .   then [GDAL](http://www.gdal.org) driver will be used in order to decode the image by supporting
    .   the following formats: [Raster](http://www.gdal.org/formats_list.html),
    .   [Vector](http://www.gdal.org/ogr_formats.html).
    .   -   If EXIF information are embedded in the image file, the EXIF orientation will be taken into account
    .   and thus the image will be rotated accordingly except if the flag @ref IMREAD_IGNORE_ORIENTATION is passed.
    .   @param filename Name of file to be loaded.
    .   @param flags Flag that can take values of cv::ImreadModes
    """
    pass

def imreadmulti(filename, mats, flags=None): # real signature unknown; restored from __doc__
    """
    imreadmulti(filename, mats[, flags]) -> retval
    .   @brief Loads a multi-page image from a file.
    .   
    .   The function imreadmulti loads a multi-page image from the specified file into a vector of Mat objects.
    .   @param filename Name of file to be loaded.
    .   @param flags Flag that can take values of cv::ImreadModes, default with cv::IMREAD_ANYCOLOR.
    .   @param mats A vector of Mat objects holding each page, if more than one.
    .   @sa cv::imread
    """
    pass

def imshow(winname, mat): # real signature unknown; restored from __doc__
    """
    imshow(winname, mat) -> None
    .   @brief Displays an image in the specified window.
    .   
    .   The function imshow displays an image in the specified window. If the window was created with the
    .   cv::WINDOW_AUTOSIZE flag, the image is shown with its original size, however it is still limited by the screen resolution.
    .   Otherwise, the image is scaled to fit the window. The function may scale the image, depending on its depth:
    .   
    .   -   If the image is 8-bit unsigned, it is displayed as is.
    .   -   If the image is 16-bit unsigned or 32-bit integer, the pixels are divided by 256. That is, the
    .   value range [0,255\*256] is mapped to [0,255].
    .   -   If the image is 32-bit or 64-bit floating-point, the pixel values are multiplied by 255. That is, the
    .   value range [0,1] is mapped to [0,255].
    .   
    .   If window was created with OpenGL support, cv::imshow also support ogl::Buffer , ogl::Texture2D and
    .   cuda::GpuMat as input.
    .   
    .   If the window was not created before this function, it is assumed creating a window with cv::WINDOW_AUTOSIZE.
    .   
    .   If you need to show an image that is bigger than the screen resolution, you will need to call namedWindow("", WINDOW_NORMAL) before the imshow.
    .   
    .   @note This function should be followed by cv::waitKey function which displays the image for specified
    .   milliseconds. Otherwise, it won't display the image. For example, **waitKey(0)** will display the window
    .   infinitely until any keypress (it is suitable for image display). **waitKey(25)** will display a frame
    .   for 25 ms, after which display will be automatically closed. (If you put it in a loop to read
    .   videos, it will display the video frame-by-frame)
    .   
    .   @note
    .   
    .   [__Windows Backend Only__] Pressing Ctrl+C will copy the image to the clipboard.
    .   
    .   [__Windows Backend Only__] Pressing Ctrl+S will show a dialog to save the image.
    .   
    .   @param winname Name of the window.
    .   @param mat Image to be shown.
    """
    pass

def imwrite(filename, img, params=None): # real signature unknown; restored from __doc__
    """
    imwrite(filename, img[, params]) -> retval
    .   @brief Saves an image to a specified file.
    .   
    .   The function imwrite saves the image to the specified file. The image format is chosen based on the
    .   filename extension (see cv::imread for the list of extensions). Only 8-bit (or 16-bit unsigned (CV_16U)
    .   in case of PNG, JPEG 2000, and TIFF) single-channel or 3-channel (with 'BGR' channel order) images
    .   can be saved using this function. If the format, depth or channel order is different, use
    .   Mat::convertTo , and cv::cvtColor to convert it before saving. Or, use the universal FileStorage I/O
    .   functions to save the image to XML or YAML format.
    .   
    .   It is possible to store PNG images with an alpha channel using this function. To do this, create
    .   8-bit (or 16-bit) 4-channel image BGRA, where the alpha channel goes last. Fully transparent pixels
    .   should have alpha set to 0, fully opaque pixels should have alpha set to 255/65535.
    .   
    .   The sample below shows how to create such a BGRA image and store to PNG file. It also demonstrates how to set custom
    .   compression parameters :
    .   @code
    .   #include <opencv2/opencv.hpp>
    .   
    .   using namespace cv;
    .   using namespace std;
    .   
    .   void createAlphaMat(Mat &mat)
    .   {
    .   CV_Assert(mat.channels() == 4);
    .   for (int i = 0; i < mat.rows; ++i) {
    .   for (int j = 0; j < mat.cols; ++j) {
    .   Vec4b& bgra = mat.at<Vec4b>(i, j);
    .   bgra[0] = UCHAR_MAX; // Blue
    .   bgra[1] = saturate_cast<uchar>((float (mat.cols - j)) / ((float)mat.cols) * UCHAR_MAX); // Green
    .   bgra[2] = saturate_cast<uchar>((float (mat.rows - i)) / ((float)mat.rows) * UCHAR_MAX); // Red
    .   bgra[3] = saturate_cast<uchar>(0.5 * (bgra[1] + bgra[2])); // Alpha
    .   }
    .   }
    .   }
    .   
    .   int main(int argv, char **argc)
    .   {
    .   // Create mat with alpha channel
    .   Mat mat(480, 640, CV_8UC4);
    .   createAlphaMat(mat);
    .   
    .   vector<int> compression_params;
    .   compression_params.push_back(IMWRITE_PNG_COMPRESSION);
    .   compression_params.push_back(9);
    .   
    .   try {
    .   imwrite("alpha.png", mat, compression_params);
    .   }
    .   catch (cv::Exception& ex) {
    .   fprintf(stderr, "Exception converting image to PNG format: %s\n", ex.what());
    .   return 1;
    .   }
    .   
    .   fprintf(stdout, "Saved PNG file with alpha data.\n");
    .   return 0;
    .   }
    .   @endcode
    .   @param filename Name of the file.
    .   @param img Image to be saved.
    .   @param params Format-specific parameters encoded as pairs (paramId_1, paramValue_1, paramId_2, paramValue_2, ... .) see cv::ImwriteFlags
    """
    pass

def initCameraMatrix2D(objectPoints, imagePoints, imageSize, aspectRatio=None): # real signature unknown; restored from __doc__
    """
    initCameraMatrix2D(objectPoints, imagePoints, imageSize[, aspectRatio]) -> retval
    .   @brief Finds an initial camera matrix from 3D-2D point correspondences.
    .   
    .   @param objectPoints Vector of vectors of the calibration pattern points in the calibration pattern
    .   coordinate space. In the old interface all the per-view vectors are concatenated. See
    .   calibrateCamera for details.
    .   @param imagePoints Vector of vectors of the projections of the calibration pattern points. In the
    .   old interface all the per-view vectors are concatenated.
    .   @param imageSize Image size in pixels used to initialize the principal point.
    .   @param aspectRatio If it is zero or negative, both \f$f_x\f$ and \f$f_y\f$ are estimated independently.
    .   Otherwise, \f$f_x = f_y * \texttt{aspectRatio}\f$ .
    .   
    .   The function estimates and returns an initial camera matrix for the camera calibration process.
    .   Currently, the function only supports planar calibration patterns, which are patterns where each
    .   object point has z-coordinate =0.
    """
    pass

def initUndistortRectifyMap(cameraMatrix, distCoeffs, R, newCameraMatrix, size, m1type, map1=None, map2=None): # real signature unknown; restored from __doc__
    """
    initUndistortRectifyMap(cameraMatrix, distCoeffs, R, newCameraMatrix, size, m1type[, map1[, map2]]) -> map1, map2
    .   @brief Computes the undistortion and rectification transformation map.
    .   
    .   The function computes the joint undistortion and rectification transformation and represents the
    .   result in the form of maps for remap. The undistorted image looks like original, as if it is
    .   captured with a camera using the camera matrix =newCameraMatrix and zero distortion. In case of a
    .   monocular camera, newCameraMatrix is usually equal to cameraMatrix, or it can be computed by
    .   cv::getOptimalNewCameraMatrix for a better control over scaling. In case of a stereo camera,
    .   newCameraMatrix is normally set to P1 or P2 computed by cv::stereoRectify .
    .   
    .   Also, this new camera is oriented differently in the coordinate space, according to R. That, for
    .   example, helps to align two heads of a stereo camera so that the epipolar lines on both images
    .   become horizontal and have the same y- coordinate (in case of a horizontally aligned stereo camera).
    .   
    .   The function actually builds the maps for the inverse mapping algorithm that is used by remap. That
    .   is, for each pixel \f$(u, v)\f$ in the destination (corrected and rectified) image, the function
    .   computes the corresponding coordinates in the source image (that is, in the original image from
    .   camera). The following process is applied:
    .   \f[
    .   \begin{array}{l}
    .   x  \leftarrow (u - {c'}_x)/{f'}_x  \\
    .   y  \leftarrow (v - {c'}_y)/{f'}_y  \\
    .   {[X\,Y\,W]} ^T  \leftarrow R^{-1}*[x \, y \, 1]^T  \\
    .   x'  \leftarrow X/W  \\
    .   y'  \leftarrow Y/W  \\
    .   r^2  \leftarrow x'^2 + y'^2 \\
    .   x''  \leftarrow x' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}
    .   + 2p_1 x' y' + p_2(r^2 + 2 x'^2)  + s_1 r^2 + s_2 r^4\\
    .   y''  \leftarrow y' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}
    .   + p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\
    .   s\vecthree{x'''}{y'''}{1} =
    .   \vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}((\tau_x, \tau_y)}
    .   {0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)}
    .   {0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\\
    .   map_x(u,v)  \leftarrow x''' f_x + c_x  \\
    .   map_y(u,v)  \leftarrow y''' f_y + c_y
    .   \end{array}
    .   \f]
    .   where \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
    .   are the distortion coefficients.
    .   
    .   In case of a stereo camera, this function is called twice: once for each camera head, after
    .   stereoRectify, which in its turn is called after cv::stereoCalibrate. But if the stereo camera
    .   was not calibrated, it is still possible to compute the rectification transformations directly from
    .   the fundamental matrix using cv::stereoRectifyUncalibrated. For each camera, the function computes
    .   homography H as the rectification transformation in a pixel domain, not a rotation matrix R in 3D
    .   space. R can be computed from H as
    .   \f[\texttt{R} = \texttt{cameraMatrix} ^{-1} \cdot \texttt{H} \cdot \texttt{cameraMatrix}\f]
    .   where cameraMatrix can be chosen arbitrarily.
    .   
    .   @param cameraMatrix Input camera matrix \f$A=\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
    .   @param distCoeffs Input vector of distortion coefficients
    .   \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
    .   of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
    .   @param R Optional rectification transformation in the object space (3x3 matrix). R1 or R2 ,
    .   computed by stereoRectify can be passed here. If the matrix is empty, the identity transformation
    .   is assumed. In cvInitUndistortMap R assumed to be an identity matrix.
    .   @param newCameraMatrix New camera matrix \f$A'=\vecthreethree{f_x'}{0}{c_x'}{0}{f_y'}{c_y'}{0}{0}{1}\f$.
    .   @param size Undistorted image size.
    .   @param m1type Type of the first output map that can be CV_32FC1, CV_32FC2 or CV_16SC2, see cv::convertMaps
    .   @param map1 The first output map.
    .   @param map2 The second output map.
    """
    pass

def initWideAngleProjMap(cameraMatrix, distCoeffs, imageSize, destImageWidth, m1type, map1=None, map2=None, projType=None, alpha=None): # real signature unknown; restored from __doc__
    """
    initWideAngleProjMap(cameraMatrix, distCoeffs, imageSize, destImageWidth, m1type[, map1[, map2[, projType[, alpha]]]]) -> retval, map1, map2
    .
    """
    pass

def inpaint(src, inpaintMask, inpaintRadius, flags, dst=None): # real signature unknown; restored from __doc__
    """
    inpaint(src, inpaintMask, inpaintRadius, flags[, dst]) -> dst
    .   @brief Restores the selected region in an image using the region neighborhood.
    .   
    .   @param src Input 8-bit, 16-bit unsigned or 32-bit float 1-channel or 8-bit 3-channel image.
    .   @param inpaintMask Inpainting mask, 8-bit 1-channel image. Non-zero pixels indicate the area that
    .   needs to be inpainted.
    .   @param dst Output image with the same size and type as src .
    .   @param inpaintRadius Radius of a circular neighborhood of each point inpainted that is considered
    .   by the algorithm.
    .   @param flags Inpainting method that could be one of the following:
    .   -   **INPAINT_NS** Navier-Stokes based method [Navier01]
    .   -   **INPAINT_TELEA** Method by Alexandru Telea @cite Telea04 .
    .   
    .   The function reconstructs the selected image area from the pixel near the area boundary. The
    .   function may be used to remove dust and scratches from a scanned photo, or to remove undesirable
    .   objects from still images or video. See <http://en.wikipedia.org/wiki/Inpainting> for more details.
    .   
    .   @note
    .   -   An example using the inpainting technique can be found at
    .   opencv_source_code/samples/cpp/inpaint.cpp
    .   -   (Python) An example using the inpainting technique can be found at
    .   opencv_source_code/samples/python/inpaint.py
    """
    pass

def inRange(src, lowerb, upperb, dst=None): # real signature unknown; restored from __doc__
    """
    inRange(src, lowerb, upperb[, dst]) -> dst
    .   @brief  Checks if array elements lie between the elements of two other arrays.
    .   
    .   The function checks the range as follows:
    .   -   For every element of a single-channel input array:
    .   \f[\texttt{dst} (I)= \texttt{lowerb} (I)_0  \leq \texttt{src} (I)_0 \leq  \texttt{upperb} (I)_0\f]
    .   -   For two-channel arrays:
    .   \f[\texttt{dst} (I)= \texttt{lowerb} (I)_0  \leq \texttt{src} (I)_0 \leq  \texttt{upperb} (I)_0  \land \texttt{lowerb} (I)_1  \leq \texttt{src} (I)_1 \leq  \texttt{upperb} (I)_1\f]
    .   -   and so forth.
    .   
    .   That is, dst (I) is set to 255 (all 1 -bits) if src (I) is within the
    .   specified 1D, 2D, 3D, ... box and 0 otherwise.
    .   
    .   When the lower and/or upper boundary parameters are scalars, the indexes
    .   (I) at lowerb and upperb in the above formulas should be omitted.
    .   @param src first input array.
    .   @param lowerb inclusive lower boundary array or a scalar.
    .   @param upperb inclusive upper boundary array or a scalar.
    .   @param dst output array of the same size as src and CV_8U type.
    """
    pass

def insertChannel(src, dst, coi): # real signature unknown; restored from __doc__
    """
    insertChannel(src, dst, coi) -> dst
    .   @brief Inserts a single channel to dst (coi is 0-based index)
    .   @param src input array
    .   @param dst output array
    .   @param coi index of channel for insertion
    .   @sa mixChannels, merge
    """
    pass

def integral(src, sum=None, sdepth=None): # real signature unknown; restored from __doc__
    """
    integral(src[, sum[, sdepth]]) -> sum
    .   @overload
    """
    pass

def integral2(src, sum=None, sqsum=None, sdepth=None, sqdepth=None): # real signature unknown; restored from __doc__
    """
    integral2(src[, sum[, sqsum[, sdepth[, sqdepth]]]]) -> sum, sqsum
    .   @overload
    """
    pass

def integral3(src, sum=None, sqsum=None, tilted=None, sdepth=None, sqdepth=None): # real signature unknown; restored from __doc__
    """
    integral3(src[, sum[, sqsum[, tilted[, sdepth[, sqdepth]]]]]) -> sum, sqsum, tilted
    .   @brief Calculates the integral of an image.
    .   
    .   The function calculates one or more integral images for the source image as follows:
    .   
    .   \f[\texttt{sum} (X,Y) =  \sum _{x<X,y<Y}  \texttt{image} (x,y)\f]
    .   
    .   \f[\texttt{sqsum} (X,Y) =  \sum _{x<X,y<Y}  \texttt{image} (x,y)^2\f]
    .   
    .   \f[\texttt{tilted} (X,Y) =  \sum _{y<Y,abs(x-X+1) \leq Y-y-1}  \texttt{image} (x,y)\f]
    .   
    .   Using these integral images, you can calculate sum, mean, and standard deviation over a specific
    .   up-right or rotated rectangular region of the image in a constant time, for example:
    .   
    .   \f[\sum _{x_1 \leq x < x_2,  \, y_1  \leq y < y_2}  \texttt{image} (x,y) =  \texttt{sum} (x_2,y_2)- \texttt{sum} (x_1,y_2)- \texttt{sum} (x_2,y_1)+ \texttt{sum} (x_1,y_1)\f]
    .   
    .   It makes possible to do a fast blurring or fast block correlation with a variable window size, for
    .   example. In case of multi-channel images, sums for each channel are accumulated independently.
    .   
    .   As a practical example, the next figure shows the calculation of the integral of a straight
    .   rectangle Rect(3,3,3,2) and of a tilted rectangle Rect(5,1,2,3) . The selected pixels in the
    .   original image are shown, as well as the relative pixels in the integral images sum and tilted .
    .   
    .   ![integral calculation example](pics/integral.png)
    .   
    .   @param src input image as \f$W \times H\f$, 8-bit or floating-point (32f or 64f).
    .   @param sum integral image as \f$(W+1)\times (H+1)\f$ , 32-bit integer or floating-point (32f or 64f).
    .   @param sqsum integral image for squared pixel values; it is \f$(W+1)\times (H+1)\f$, double-precision
    .   floating-point (64f) array.
    .   @param tilted integral for the image rotated by 45 degrees; it is \f$(W+1)\times (H+1)\f$ array with
    .   the same data type as sum.
    .   @param sdepth desired depth of the integral and the tilted integral images, CV_32S, CV_32F, or
    .   CV_64F.
    .   @param sqdepth desired depth of the integral image of squared pixel values, CV_32F or CV_64F.
    """
    pass

def intersectConvexConvex(_p1, _p2, _p12=None, handleNested=None): # real signature unknown; restored from __doc__
    """
    intersectConvexConvex(_p1, _p2[, _p12[, handleNested]]) -> retval, _p12
    .
    """
    pass

def invert(src, dst=None, flags=None): # real signature unknown; restored from __doc__
    """
    invert(src[, dst[, flags]]) -> retval, dst
    .   @brief Finds the inverse or pseudo-inverse of a matrix.
    .   
    .   The function cv::invert inverts the matrix src and stores the result in dst
    .   . When the matrix src is singular or non-square, the function calculates
    .   the pseudo-inverse matrix (the dst matrix) so that norm(src\*dst - I) is
    .   minimal, where I is an identity matrix.
    .   
    .   In case of the DECOMP_LU method, the function returns non-zero value if
    .   the inverse has been successfully calculated and 0 if src is singular.
    .   
    .   In case of the DECOMP_SVD method, the function returns the inverse
    .   condition number of src (the ratio of the smallest singular value to the
    .   largest singular value) and 0 if src is singular. The SVD method
    .   calculates a pseudo-inverse matrix if src is singular.
    .   
    .   Similarly to DECOMP_LU, the method DECOMP_CHOLESKY works only with
    .   non-singular square matrices that should also be symmetrical and
    .   positively defined. In this case, the function stores the inverted
    .   matrix in dst and returns non-zero. Otherwise, it returns 0.
    .   
    .   @param src input floating-point M x N matrix.
    .   @param dst output matrix of N x M size and the same type as src.
    .   @param flags inversion method (cv::DecompTypes)
    .   @sa solve, SVD
    """
    pass

def invertAffineTransform(M, iM=None): # real signature unknown; restored from __doc__
    """
    invertAffineTransform(M[, iM]) -> iM
    .   @brief Inverts an affine transformation.
    .   
    .   The function computes an inverse affine transformation represented by \f$2 \times 3\f$ matrix M:
    .   
    .   \f[\begin{bmatrix} a_{11} & a_{12} & b_1  \\ a_{21} & a_{22} & b_2 \end{bmatrix}\f]
    .   
    .   The result is also a \f$2 \times 3\f$ matrix of the same type as M.
    .   
    .   @param M Original affine transformation.
    .   @param iM Output reverse affine transformation.
    """
    pass

def isContourConvex(contour): # real signature unknown; restored from __doc__
    """
    isContourConvex(contour) -> retval
    .   @brief Tests a contour convexity.
    .   
    .   The function tests whether the input contour is convex or not. The contour must be simple, that is,
    .   without self-intersections. Otherwise, the function output is undefined.
    .   
    .   @param contour Input vector of 2D points, stored in std::vector\<\> or Mat
    """
    pass

def KalmanFilter(dynamParams=None, measureParams=None, controlParams=None, type=None): # real signature unknown; restored from __doc__
    """
    KalmanFilter([dynamParams, measureParams[, controlParams[, type]]]) -> <KalmanFilter object>
    .
    """
    pass

def KAZE_create(extended=None, upright=None, threshold=None, nOctaves=None, nOctaveLayers=None, diffusivity=None): # real signature unknown; restored from __doc__
    """
    KAZE_create([, extended[, upright[, threshold[, nOctaves[, nOctaveLayers[, diffusivity]]]]]]) -> retval
    .   @brief The KAZE constructor
    .   
    .   @param extended Set to enable extraction of extended (128-byte) descriptor.
    .   @param upright Set to enable use of upright descriptors (non rotation-invariant).
    .   @param threshold Detector response threshold to accept point
    .   @param nOctaves Maximum octave evolution of the image
    .   @param nOctaveLayers Default number of sublevels per scale level
    .   @param diffusivity Diffusivity type. DIFF_PM_G1, DIFF_PM_G2, DIFF_WEICKERT or
    .   DIFF_CHARBONNIER
    """
    pass

def KeyPoint(x=None, y=None, _size=None, _angle=None, _response=None, _octave=None, _class_id=None): # real signature unknown; restored from __doc__
    """
    KeyPoint([x, y, _size[, _angle[, _response[, _octave[, _class_id]]]]]) -> <KeyPoint object>
    .
    """
    pass

def KeyPoint_convert(keypoints, keypointIndexes=None): # real signature unknown; restored from __doc__
    """
    KeyPoint_convert(keypoints[, keypointIndexes]) -> points2f
    .   This method converts vector of keypoints to vector of points or the reverse, where each keypoint is
    .   assigned the same size and the same orientation.
    .   
    .   @param keypoints Keypoints obtained from any feature detection algorithm like SIFT/SURF/ORB
    .   @param points2f Array of (x,y) coordinates of each keypoint
    .   @param keypointIndexes Array of indexes of keypoints to be converted to points. (Acts like a mask to
    .   convert only specified keypoints)
    
    
    
    KeyPoint_convert(points2f[, size[, response[, octave[, class_id]]]]) -> keypoints
    .   @overload
    .   @param points2f Array of (x,y) coordinates of each keypoint
    .   @param keypoints Keypoints obtained from any feature detection algorithm like SIFT/SURF/ORB
    .   @param size keypoint diameter
    .   @param response keypoint detector response on the keypoint (that is, strength of the keypoint)
    .   @param octave pyramid octave in which the keypoint has been detected
    .   @param class_id object id
    """
    pass

def KeyPoint_overlap(kp1, kp2): # real signature unknown; restored from __doc__
    """
    KeyPoint_overlap(kp1, kp2) -> retval
    .   This method computes overlap for pair of keypoints. Overlap is the ratio between area of keypoint
    .   regions' intersection and area of keypoint regions' union (considering keypoint region as circle).
    .   If they don't overlap, we get zero. If they coincide at same location with same size, we get 1.
    .   @param kp1 First keypoint
    .   @param kp2 Second keypoint
    """
    pass

def kmeans(data, K, bestLabels, criteria, attempts, flags, centers=None): # real signature unknown; restored from __doc__
    """
    kmeans(data, K, bestLabels, criteria, attempts, flags[, centers]) -> retval, bestLabels, centers
    .   @brief Finds centers of clusters and groups input samples around the clusters.
    .   
    .   The function kmeans implements a k-means algorithm that finds the centers of cluster_count clusters
    .   and groups the input samples around the clusters. As an output, \f$\texttt{labels}_i\f$ contains a
    .   0-based cluster index for the sample stored in the \f$i^{th}\f$ row of the samples matrix.
    .   
    .   @note
    .   -   (Python) An example on K-means clustering can be found at
    .   opencv_source_code/samples/python/kmeans.py
    .   @param data Data for clustering. An array of N-Dimensional points with float coordinates is needed.
    .   Examples of this array can be:
    .   -   Mat points(count, 2, CV_32F);
    .   -   Mat points(count, 1, CV_32FC2);
    .   -   Mat points(1, count, CV_32FC2);
    .   -   std::vector\<cv::Point2f\> points(sampleCount);
    .   @param K Number of clusters to split the set by.
    .   @param bestLabels Input/output integer array that stores the cluster indices for every sample.
    .   @param criteria The algorithm termination criteria, that is, the maximum number of iterations and/or
    .   the desired accuracy. The accuracy is specified as criteria.epsilon. As soon as each of the cluster
    .   centers moves by less than criteria.epsilon on some iteration, the algorithm stops.
    .   @param attempts Flag to specify the number of times the algorithm is executed using different
    .   initial labellings. The algorithm returns the labels that yield the best compactness (see the last
    .   function parameter).
    .   @param flags Flag that can take values of cv::KmeansFlags
    .   @param centers Output matrix of the cluster centers, one row per each cluster center.
    .   @return The function returns the compactness measure that is computed as
    .   \f[\sum _i  \| \texttt{samples} _i -  \texttt{centers} _{ \texttt{labels} _i} \| ^2\f]
    .   after every attempt. The best (minimum) value is chosen and the corresponding labels and the
    .   compactness value are returned by the function. Basically, you can use only the core of the
    .   function, set the number of attempts to 1, initialize labels each time using a custom algorithm,
    .   pass them with the ( flags = KMEANS_USE_INITIAL_LABELS ) flag, and then choose the best
    .   (most-compact) clustering.
    """
    pass

def Laplacian(src, ddepth, dst=None, ksize=None, scale=None, delta=None, borderType=None): # real signature unknown; restored from __doc__
    """
    Laplacian(src, ddepth[, dst[, ksize[, scale[, delta[, borderType]]]]]) -> dst
    .   @brief Calculates the Laplacian of an image.
    .   
    .   The function calculates the Laplacian of the source image by adding up the second x and y
    .   derivatives calculated using the Sobel operator:
    .   
    .   \f[\texttt{dst} =  \Delta \texttt{src} =  \frac{\partial^2 \texttt{src}}{\partial x^2} +  \frac{\partial^2 \texttt{src}}{\partial y^2}\f]
    .   
    .   This is done when `ksize > 1`. When `ksize == 1`, the Laplacian is computed by filtering the image
    .   with the following \f$3 \times 3\f$ aperture:
    .   
    .   \f[\vecthreethree {0}{1}{0}{1}{-4}{1}{0}{1}{0}\f]
    .   
    .   @param src Source image.
    .   @param dst Destination image of the same size and the same number of channels as src .
    .   @param ddepth Desired depth of the destination image.
    .   @param ksize Aperture size used to compute the second-derivative filters. See getDerivKernels for
    .   details. The size must be positive and odd.
    .   @param scale Optional scale factor for the computed Laplacian values. By default, no scaling is
    .   applied. See getDerivKernels for details.
    .   @param delta Optional delta value that is added to the results prior to storing them in dst .
    .   @param borderType Pixel extrapolation method, see cv::BorderTypes
    .   @sa  Sobel, Scharr
    """
    pass

def line(img, pt1, pt2, color, thickness=None, lineType=None, shift=None): # real signature unknown; restored from __doc__
    """
    line(img, pt1, pt2, color[, thickness[, lineType[, shift]]]) -> img
    .   @brief Draws a line segment connecting two points.
    .   
    .   The function line draws the line segment between pt1 and pt2 points in the image. The line is
    .   clipped by the image boundaries. For non-antialiased lines with integer coordinates, the 8-connected
    .   or 4-connected Bresenham algorithm is used. Thick lines are drawn with rounding endings. Antialiased
    .   lines are drawn using Gaussian filtering.
    .   
    .   @param img Image.
    .   @param pt1 First point of the line segment.
    .   @param pt2 Second point of the line segment.
    .   @param color Line color.
    .   @param thickness Line thickness.
    .   @param lineType Type of the line, see cv::LineTypes.
    .   @param shift Number of fractional bits in the point coordinates.
    """
    pass

def linearPolar(src, center, maxRadius, flags, dst=None): # real signature unknown; restored from __doc__
    """
    linearPolar(src, center, maxRadius, flags[, dst]) -> dst
    .   @brief Remaps an image to polar coordinates space.
    .   
    .   @anchor polar_remaps_reference_image
    .   ![Polar remaps reference](pics/polar_remap_doc.png)
    .   
    .   Transform the source image using the following transformation:
    .   \f[\begin{array}{l}
    .   dst( \rho , \phi ) = src(x,y) \\
    .   dst.size() \leftarrow src.size()
    .   \end{array}\f]
    .   
    .   where
    .   \f[\begin{array}{l}
    .   I = (dx,dy) = (x - center.x,y - center.y) \\
    .   \rho = Kx \cdot \texttt{magnitude} (I) ,\\
    .   \phi = Ky \cdot \texttt{angle} (I)_{0..360 deg}
    .   \end{array}\f]
    .   
    .   and
    .   \f[\begin{array}{l}
    .   Kx = src.cols / maxRadius \\
    .   Ky = src.rows / 360
    .   \end{array}\f]
    .   
    .   
    .   @param src Source image
    .   @param dst Destination image. It will have same size and type as src.
    .   @param center The transformation center;
    .   @param maxRadius The radius of the bounding circle to transform. It determines the inverse magnitude scale parameter too.
    .   @param flags A combination of interpolation methods, see cv::InterpolationFlags
    .   
    .   @note
    .   -   The function can not operate in-place.
    .   -   To calculate magnitude and angle in degrees @ref cv::cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees.
    """
    pass

def log(src, dst=None): # real signature unknown; restored from __doc__
    """
    log(src[, dst]) -> dst
    .   @brief Calculates the natural logarithm of every array element.
    .   
    .   The function cv::log calculates the natural logarithm of every element of the input array:
    .   \f[\texttt{dst} (I) =  \log (\texttt{src}(I)) \f]
    .   
    .   Output on zero, negative and special (NaN, Inf) values is undefined.
    .   
    .   @param src input array.
    .   @param dst output array of the same size and type as src .
    .   @sa exp, cartToPolar, polarToCart, phase, pow, sqrt, magnitude
    """
    pass

def logPolar(src, center, M, flags, dst=None): # real signature unknown; restored from __doc__
    """
    logPolar(src, center, M, flags[, dst]) -> dst
    .   @brief Remaps an image to semilog-polar coordinates space.
    .   
    .   Transform the source image using the following transformation (See @ref polar_remaps_reference_image "Polar remaps reference image"):
    .   \f[\begin{array}{l}
    .   dst( \rho , \phi ) = src(x,y) \\
    .   dst.size() \leftarrow src.size()
    .   \end{array}\f]
    .   
    .   where
    .   \f[\begin{array}{l}
    .   I = (dx,dy) = (x - center.x,y - center.y) \\
    .   \rho = M \cdot log_e(\texttt{magnitude} (I)) ,\\
    .   \phi = Ky \cdot \texttt{angle} (I)_{0..360 deg} \\
    .   \end{array}\f]
    .   
    .   and
    .   \f[\begin{array}{l}
    .   M = src.cols / log_e(maxRadius) \\
    .   Ky = src.rows / 360 \\
    .   \end{array}\f]
    .   
    .   The function emulates the human "foveal" vision and can be used for fast scale and
    .   rotation-invariant template matching, for object tracking and so forth.
    .   @param src Source image
    .   @param dst Destination image. It will have same size and type as src.
    .   @param center The transformation center; where the output precision is maximal
    .   @param M Magnitude scale parameter. It determines the radius of the bounding circle to transform too.
    .   @param flags A combination of interpolation methods, see cv::InterpolationFlags
    .   
    .   @note
    .   -   The function can not operate in-place.
    .   -   To calculate magnitude and angle in degrees @ref cv::cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees.
    """
    pass

def LUT(src, lut, dst=None): # real signature unknown; restored from __doc__
    """
    LUT(src, lut[, dst]) -> dst
    .   @brief Performs a look-up table transform of an array.
    .   
    .   The function LUT fills the output array with values from the look-up table. Indices of the entries
    .   are taken from the input array. That is, the function processes each element of src as follows:
    .   \f[\texttt{dst} (I)  \leftarrow \texttt{lut(src(I) + d)}\f]
    .   where
    .   \f[d =  \fork{0}{if \(\texttt{src}\) has depth \(\texttt{CV_8U}\)}{128}{if \(\texttt{src}\) has depth \(\texttt{CV_8S}\)}\f]
    .   @param src input array of 8-bit elements.
    .   @param lut look-up table of 256 elements; in case of multi-channel input array, the table should
    .   either have a single channel (in this case the same table is used for all channels) or the same
    .   number of channels as in the input array.
    .   @param dst output array of the same size and number of channels as src, and the same depth as lut.
    .   @sa  convertScaleAbs, Mat::convertTo
    """
    pass

def magnitude(x, y, magnitude=None): # real signature unknown; restored from __doc__
    """
    magnitude(x, y[, magnitude]) -> magnitude
    .   @brief Calculates the magnitude of 2D vectors.
    .   
    .   The function cv::magnitude calculates the magnitude of 2D vectors formed
    .   from the corresponding elements of x and y arrays:
    .   \f[\texttt{dst} (I) =  \sqrt{\texttt{x}(I)^2 + \texttt{y}(I)^2}\f]
    .   @param x floating-point array of x-coordinates of the vectors.
    .   @param y floating-point array of y-coordinates of the vectors; it must
    .   have the same size as x.
    .   @param magnitude output array of the same size and type as x.
    .   @sa cartToPolar, polarToCart, phase, sqrt
    """
    pass

def Mahalanobis(v1, v2, icovar): # real signature unknown; restored from __doc__
    """
    Mahalanobis(v1, v2, icovar) -> retval
    .   @brief Calculates the Mahalanobis distance between two vectors.
    .   
    .   The function cv::Mahalanobis calculates and returns the weighted distance between two vectors:
    .   \f[d( \texttt{vec1} , \texttt{vec2} )= \sqrt{\sum_{i,j}{\texttt{icovar(i,j)}\cdot(\texttt{vec1}(I)-\texttt{vec2}(I))\cdot(\texttt{vec1(j)}-\texttt{vec2(j)})} }\f]
    .   The covariance matrix may be calculated using the cv::calcCovarMatrix function and then inverted using
    .   the invert function (preferably using the cv::DECOMP_SVD method, as the most accurate).
    .   @param v1 first 1D input vector.
    .   @param v2 second 1D input vector.
    .   @param icovar inverse covariance matrix.
    """
    pass

def matchShapes(contour1, contour2, method, parameter): # real signature unknown; restored from __doc__
    """
    matchShapes(contour1, contour2, method, parameter) -> retval
    .   @brief Compares two shapes.
    .   
    .   The function compares two shapes. All three implemented methods use the Hu invariants (see cv::HuMoments)
    .   
    .   @param contour1 First contour or grayscale image.
    .   @param contour2 Second contour or grayscale image.
    .   @param method Comparison method, see cv::ShapeMatchModes
    .   @param parameter Method-specific parameter (not supported now).
    """
    pass

def matchTemplate(image, templ, method, result=None, mask=None): # real signature unknown; restored from __doc__
    """
    matchTemplate(image, templ, method[, result[, mask]]) -> result
    .   @brief Compares a template against overlapped image regions.
    .   
    .   The function slides through image , compares the overlapped patches of size \f$w \times h\f$ against
    .   templ using the specified method and stores the comparison results in result . Here are the formulae
    .   for the available comparison methods ( \f$I\f$ denotes image, \f$T\f$ template, \f$R\f$ result ). The summation
    .   is done over template and/or the image patch: \f$x' = 0...w-1, y' = 0...h-1\f$
    .   
    .   After the function finishes the comparison, the best matches can be found as global minimums (when
    .   TM_SQDIFF was used) or maximums (when TM_CCORR or TM_CCOEFF was used) using the
    .   minMaxLoc function. In case of a color image, template summation in the numerator and each sum in
    .   the denominator is done over all of the channels and separate mean values are used for each channel.
    .   That is, the function can take a color template and a color image. The result will still be a
    .   single-channel image, which is easier to analyze.
    .   
    .   @param image Image where the search is running. It must be 8-bit or 32-bit floating-point.
    .   @param templ Searched template. It must be not greater than the source image and have the same
    .   data type.
    .   @param result Map of comparison results. It must be single-channel 32-bit floating-point. If image
    .   is \f$W \times H\f$ and templ is \f$w \times h\f$ , then result is \f$(W-w+1) \times (H-h+1)\f$ .
    .   @param method Parameter specifying the comparison method, see cv::TemplateMatchModes
    .   @param mask Mask of searched template. It must have the same datatype and size with templ. It is
    .   not set by default. Currently, only the TM_SQDIFF and TM_CCORR_NORMED methods are supported.
    """
    pass

def matMulDeriv(A, B, dABdA=None, dABdB=None): # real signature unknown; restored from __doc__
    """
    matMulDeriv(A, B[, dABdA[, dABdB]]) -> dABdA, dABdB
    .   @brief Computes partial derivatives of the matrix product for each multiplied matrix.
    .   
    .   @param A First multiplied matrix.
    .   @param B Second multiplied matrix.
    .   @param dABdA First output derivative matrix d(A\*B)/dA of size
    .   \f$\texttt{A.rows*B.cols} \times {A.rows*A.cols}\f$ .
    .   @param dABdB Second output derivative matrix d(A\*B)/dB of size
    .   \f$\texttt{A.rows*B.cols} \times {B.rows*B.cols}\f$ .
    .   
    .   The function computes partial derivatives of the elements of the matrix product \f$A*B\f$ with regard to
    .   the elements of each of the two input matrices. The function is used to compute the Jacobian
    .   matrices in stereoCalibrate but can also be used in any other similar optimization function.
    """
    pass

def max(src1, src2, dst=None): # real signature unknown; restored from __doc__
    """
    max(src1, src2[, dst]) -> dst
    .   @brief Calculates per-element maximum of two arrays or an array and a scalar.
    .   
    .   The function cv::max calculates the per-element maximum of two arrays:
    .   \f[\texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{src2} (I))\f]
    .   or array and a scalar:
    .   \f[\texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{value} )\f]
    .   @param src1 first input array.
    .   @param src2 second input array of the same size and type as src1 .
    .   @param dst output array of the same size and type as src1.
    .   @sa  min, compare, inRange, minMaxLoc, @ref MatrixExpressions
    """
    pass

def mean(src, mask=None): # real signature unknown; restored from __doc__
    """
    mean(src[, mask]) -> retval
    .   @brief Calculates an average (mean) of array elements.
    .   
    .   The function cv::mean calculates the mean value M of array elements,
    .   independently for each channel, and return it:
    .   \f[\begin{array}{l} N =  \sum _{I: \; \texttt{mask} (I) \ne 0} 1 \\ M_c =  \left ( \sum _{I: \; \texttt{mask} (I) \ne 0}{ \texttt{mtx} (I)_c} \right )/N \end{array}\f]
    .   When all the mask elements are 0's, the function returns Scalar::all(0)
    .   @param src input array that should have from 1 to 4 channels so that the result can be stored in
    .   Scalar_ .
    .   @param mask optional operation mask.
    .   @sa  countNonZero, meanStdDev, norm, minMaxLoc
    """
    pass

def meanShift(probImage, window, criteria): # real signature unknown; restored from __doc__
    """
    meanShift(probImage, window, criteria) -> retval, window
    .   @brief Finds an object on a back projection image.
    .   
    .   @param probImage Back projection of the object histogram. See calcBackProject for details.
    .   @param window Initial search window.
    .   @param criteria Stop criteria for the iterative search algorithm.
    .   returns
    .   :   Number of iterations CAMSHIFT took to converge.
    .   The function implements the iterative object search algorithm. It takes the input back projection of
    .   an object and the initial position. The mass center in window of the back projection image is
    .   computed and the search window center shifts to the mass center. The procedure is repeated until the
    .   specified number of iterations criteria.maxCount is done or until the window center shifts by less
    .   than criteria.epsilon. The algorithm is used inside CamShift and, unlike CamShift , the search
    .   window size or orientation do not change during the search. You can simply pass the output of
    .   calcBackProject to this function. But better results can be obtained if you pre-filter the back
    .   projection and remove the noise. For example, you can do this by retrieving connected components
    .   with findContours , throwing away contours with small area ( contourArea ), and rendering the
    .   remaining contours with drawContours.
    """
    pass

def meanStdDev(src, mean=None, stddev=None, mask=None): # real signature unknown; restored from __doc__
    """
    meanStdDev(src[, mean[, stddev[, mask]]]) -> mean, stddev
    .   Calculates a mean and standard deviation of array elements.
    .   
    .   The function cv::meanStdDev calculates the mean and the standard deviation M
    .   of array elements independently for each channel and returns it via the
    .   output parameters:
    .   \f[\begin{array}{l} N =  \sum _{I, \texttt{mask} (I)  \ne 0} 1 \\ \texttt{mean} _c =  \frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \texttt{src} (I)_c}{N} \\ \texttt{stddev} _c =  \sqrt{\frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \left ( \texttt{src} (I)_c -  \texttt{mean} _c \right )^2}{N}} \end{array}\f]
    .   When all the mask elements are 0's, the function returns
    .   mean=stddev=Scalar::all(0).
    .   @note The calculated standard deviation is only the diagonal of the
    .   complete normalized covariance matrix. If the full matrix is needed, you
    .   can reshape the multi-channel array M x N to the single-channel array
    .   M\*N x mtx.channels() (only possible when the matrix is continuous) and
    .   then pass the matrix to calcCovarMatrix .
    .   @param src input array that should have from 1 to 4 channels so that the results can be stored in
    .   Scalar_ 's.
    .   @param mean output parameter: calculated mean value.
    .   @param stddev output parameter: calculated standard deviation.
    .   @param mask optional operation mask.
    .   @sa  countNonZero, mean, norm, minMaxLoc, calcCovarMatrix
    """
    pass

def medianBlur(src, ksize, dst=None): # real signature unknown; restored from __doc__
    """
    medianBlur(src, ksize[, dst]) -> dst
    .   @brief Blurs an image using the median filter.
    .   
    .   The function smoothes an image using the median filter with the \f$\texttt{ksize} \times
    .   \texttt{ksize}\f$ aperture. Each channel of a multi-channel image is processed independently.
    .   In-place operation is supported.
    .   
    .   @note The median filter uses BORDER_REPLICATE internally to cope with border pixels, see cv::BorderTypes
    .   
    .   @param src input 1-, 3-, or 4-channel image; when ksize is 3 or 5, the image depth should be
    .   CV_8U, CV_16U, or CV_32F, for larger aperture sizes, it can only be CV_8U.
    .   @param dst destination array of the same size and type as src.
    .   @param ksize aperture linear size; it must be odd and greater than 1, for example: 3, 5, 7 ...
    .   @sa  bilateralFilter, blur, boxFilter, GaussianBlur
    """
    pass

def merge(mv, dst=None): # real signature unknown; restored from __doc__
    """
    merge(mv[, dst]) -> dst
    .   @overload
    .   @param mv input vector of matrices to be merged; all the matrices in mv must have the same
    .   size and the same depth.
    .   @param dst output array of the same size and the same depth as mv[0]; The number of channels will
    .   be the total number of channels in the matrix array.
    """
    pass

def min(src1, src2, dst=None): # real signature unknown; restored from __doc__
    """
    min(src1, src2[, dst]) -> dst
    .   @brief Calculates per-element minimum of two arrays or an array and a scalar.
    .   
    .   The function cv::min calculates the per-element minimum of two arrays:
    .   \f[\texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{src2} (I))\f]
    .   or array and a scalar:
    .   \f[\texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{value} )\f]
    .   @param src1 first input array.
    .   @param src2 second input array of the same size and type as src1.
    .   @param dst output array of the same size and type as src1.
    .   @sa max, compare, inRange, minMaxLoc
    """
    pass

def minAreaRect(points): # real signature unknown; restored from __doc__
    """
    minAreaRect(points) -> retval
    .   @brief Finds a rotated rectangle of the minimum area enclosing the input 2D point set.
    .   
    .   The function calculates and returns the minimum-area bounding rectangle (possibly rotated) for a
    .   specified point set. See the OpenCV sample minarea.cpp . Developer should keep in mind that the
    .   returned rotatedRect can contain negative indices when data is close to the containing Mat element
    .   boundary.
    .   
    .   @param points Input vector of 2D points, stored in std::vector\<\> or Mat
    """
    pass

def minEnclosingCircle(points): # real signature unknown; restored from __doc__
    """
    minEnclosingCircle(points) -> center, radius
    .   @brief Finds a circle of the minimum area enclosing a 2D point set.
    .   
    .   The function finds the minimal enclosing circle of a 2D point set using an iterative algorithm. See
    .   the OpenCV sample minarea.cpp .
    .   
    .   @param points Input vector of 2D points, stored in std::vector\<\> or Mat
    .   @param center Output center of the circle.
    .   @param radius Output radius of the circle.
    """
    pass

def minEnclosingTriangle(points, triangle=None): # real signature unknown; restored from __doc__
    """
    minEnclosingTriangle(points[, triangle]) -> retval, triangle
    .   @brief Finds a triangle of minimum area enclosing a 2D point set and returns its area.
    .   
    .   The function finds a triangle of minimum area enclosing the given set of 2D points and returns its
    .   area. The output for a given 2D point set is shown in the image below. 2D points are depicted in
    .   *red* and the enclosing triangle in *yellow*.
    .   
    .   ![Sample output of the minimum enclosing triangle function](pics/minenclosingtriangle.png)
    .   
    .   The implementation of the algorithm is based on O'Rourke's @cite ORourke86 and Klee and Laskowski's
    .   @cite KleeLaskowski85 papers. O'Rourke provides a \f$\theta(n)\f$ algorithm for finding the minimal
    .   enclosing triangle of a 2D convex polygon with n vertices. Since the minEnclosingTriangle function
    .   takes a 2D point set as input an additional preprocessing step of computing the convex hull of the
    .   2D point set is required. The complexity of the convexHull function is \f$O(n log(n))\f$ which is higher
    .   than \f$\theta(n)\f$. Thus the overall complexity of the function is \f$O(n log(n))\f$.
    .   
    .   @param points Input vector of 2D points with depth CV_32S or CV_32F, stored in std::vector\<\> or Mat
    .   @param triangle Output vector of three 2D points defining the vertices of the triangle. The depth
    .   of the OutputArray must be CV_32F.
    """
    pass

def minMaxLoc(src, mask=None): # real signature unknown; restored from __doc__
    """
    minMaxLoc(src[, mask]) -> minVal, maxVal, minLoc, maxLoc
    .   @brief Finds the global minimum and maximum in an array.
    .   
    .   The function cv::minMaxLoc finds the minimum and maximum element values and their positions. The
    .   extremums are searched across the whole array or, if mask is not an empty array, in the specified
    .   array region.
    .   
    .   The function do not work with multi-channel arrays. If you need to find minimum or maximum
    .   elements across all the channels, use Mat::reshape first to reinterpret the array as
    .   single-channel. Or you may extract the particular channel using either extractImageCOI , or
    .   mixChannels , or split .
    .   @param src input single-channel array.
    .   @param minVal pointer to the returned minimum value; NULL is used if not required.
    .   @param maxVal pointer to the returned maximum value; NULL is used if not required.
    .   @param minLoc pointer to the returned minimum location (in 2D case); NULL is used if not required.
    .   @param maxLoc pointer to the returned maximum location (in 2D case); NULL is used if not required.
    .   @param mask optional mask used to select a sub-array.
    .   @sa max, min, compare, inRange, extractImageCOI, mixChannels, split, Mat::reshape
    """
    pass

def mixChannels(src, dst, fromTo): # real signature unknown; restored from __doc__
    """
    mixChannels(src, dst, fromTo) -> dst
    .   @overload
    .   @param src input array or vector of matrices; all of the matrices must have the same size and the
    .   same depth.
    .   @param dst output array or vector of matrices; all the matrices **must be allocated**; their size and
    .   depth must be the same as in src[0].
    .   @param fromTo array of index pairs specifying which channels are copied and where; fromTo[k\*2] is
    .   a 0-based index of the input channel in src, fromTo[k\*2+1] is an index of the output channel in
    .   dst; the continuous channel numbering is used: the first input image channels are indexed from 0 to
    .   src[0].channels()-1, the second input image channels are indexed from src[0].channels() to
    .   src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for the output image
    .   channels; as a special case, when fromTo[k\*2] is negative, the corresponding output channel is
    .   filled with zero .
    """
    pass

def moments(array, binaryImage=None): # real signature unknown; restored from __doc__
    """
    moments(array[, binaryImage]) -> retval
    .   @brief Calculates all of the moments up to the third order of a polygon or rasterized shape.
    .   
    .   The function computes moments, up to the 3rd order, of a vector shape or a rasterized shape. The
    .   results are returned in the structure cv::Moments.
    .   
    .   @param array Raster image (single-channel, 8-bit or floating-point 2D array) or an array (
    .   \f$1 \times N\f$ or \f$N \times 1\f$ ) of 2D points (Point or Point2f ).
    .   @param binaryImage If it is true, all non-zero image pixels are treated as 1's. The parameter is
    .   used for images only.
    .   @returns moments.
    .   
    .   @note Only applicable to contour moments calculations from Python bindings: Note that the numpy
    .   type for the input array should be either np.int32 or np.float32.
    .   
    .   @sa  contourArea, arcLength
    """
    pass

def morphologyEx(src, op, kernel, dst=None, anchor=None, iterations=None, borderType=None, borderValue=None): # real signature unknown; restored from __doc__
    """
    morphologyEx(src, op, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) -> dst
    .   @brief Performs advanced morphological transformations.
    .   
    .   The function morphologyEx can perform advanced morphological transformations using an erosion and dilation as
    .   basic operations.
    .   
    .   Any of the operations can be done in-place. In case of multi-channel images, each channel is
    .   processed independently.
    .   
    .   @param src Source image. The number of channels can be arbitrary. The depth should be one of
    .   CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
    .   @param dst Destination image of the same size and type as source image.
    .   @param op Type of a morphological operation, see cv::MorphTypes
    .   @param kernel Structuring element. It can be created using cv::getStructuringElement.
    .   @param anchor Anchor position with the kernel. Negative values mean that the anchor is at the
    .   kernel center.
    .   @param iterations Number of times erosion and dilation are applied.
    .   @param borderType Pixel extrapolation method, see cv::BorderTypes
    .   @param borderValue Border value in case of a constant border. The default value has a special
    .   meaning.
    .   @sa  dilate, erode, getStructuringElement
    .   @note The number of iterations is the number of times erosion or dilatation operation will be applied.
    .   For instance, an opening operation (#MORPH_OPEN) with two iterations is equivalent to apply
    .   successively: erode -> erode -> dilate -> dilate (and not erode -> dilate -> erode -> dilate).
    """
    pass

def moveWindow(winname, x, y): # real signature unknown; restored from __doc__
    """
    moveWindow(winname, x, y) -> None
    .   @brief Moves window to the specified position
    .   
    .   @param winname Name of the window.
    .   @param x The new x-coordinate of the window.
    .   @param y The new y-coordinate of the window.
    """
    pass

def MSER_create(_delta=None, _min_area=None, _max_area=None, _max_variation=None, _min_diversity=None, _max_evolution=None, _area_threshold=None, _min_margin=None, _edge_blur_size=None): # real signature unknown; restored from __doc__
    """
    MSER_create([, _delta[, _min_area[, _max_area[, _max_variation[, _min_diversity[, _max_evolution[, _area_threshold[, _min_margin[, _edge_blur_size]]]]]]]]]) -> retval
    .   @brief Full consturctor for %MSER detector
    .   
    .   @param _delta it compares \f$(size_{i}-size_{i-delta})/size_{i-delta}\f$
    .   @param _min_area prune the area which smaller than minArea
    .   @param _max_area prune the area which bigger than maxArea
    .   @param _max_variation prune the area have simliar size to its children
    .   @param _min_diversity for color image, trace back to cut off mser with diversity less than min_diversity
    .   @param _max_evolution  for color image, the evolution steps
    .   @param _area_threshold for color image, the area threshold to cause re-initialize
    .   @param _min_margin for color image, ignore too small margin
    .   @param _edge_blur_size for color image, the aperture size for edge blur
    """
    pass

def mulSpectrums(a, b, flags, c=None, conjB=None): # real signature unknown; restored from __doc__
    """
    mulSpectrums(a, b, flags[, c[, conjB]]) -> c
    .   @brief Performs the per-element multiplication of two Fourier spectrums.
    .   
    .   The function cv::mulSpectrums performs the per-element multiplication of the two CCS-packed or complex
    .   matrices that are results of a real or complex Fourier transform.
    .   
    .   The function, together with dft and idft , may be used to calculate convolution (pass conjB=false )
    .   or correlation (pass conjB=true ) of two arrays rapidly. When the arrays are complex, they are
    .   simply multiplied (per element) with an optional conjugation of the second-array elements. When the
    .   arrays are real, they are assumed to be CCS-packed (see dft for details).
    .   @param a first input array.
    .   @param b second input array of the same size and type as src1 .
    .   @param c output array of the same size and type as src1 .
    .   @param flags operation flags; currently, the only supported flag is cv::DFT_ROWS, which indicates that
    .   each row of src1 and src2 is an independent 1D Fourier spectrum. If you do not want to use this flag, then simply add a `0` as value.
    .   @param conjB optional flag that conjugates the second input array before the multiplication (true)
    .   or not (false).
    """
    pass

def multiply(src1, src2, dst=None, scale=None, dtype=None): # real signature unknown; restored from __doc__
    """
    multiply(src1, src2[, dst[, scale[, dtype]]]) -> dst
    .   @brief Calculates the per-element scaled product of two arrays.
    .   
    .   The function multiply calculates the per-element product of two arrays:
    .   
    .   \f[\texttt{dst} (I)= \texttt{saturate} ( \texttt{scale} \cdot \texttt{src1} (I)  \cdot \texttt{src2} (I))\f]
    .   
    .   There is also a @ref MatrixExpressions -friendly variant of the first function. See Mat::mul .
    .   
    .   For a not-per-element matrix product, see gemm .
    .   
    .   @note Saturation is not applied when the output array has the depth
    .   CV_32S. You may even get result of an incorrect sign in the case of
    .   overflow.
    .   @param src1 first input array.
    .   @param src2 second input array of the same size and the same type as src1.
    .   @param dst output array of the same size and type as src1.
    .   @param scale optional scale factor.
    .   @param dtype optional depth of the output array
    .   @sa add, subtract, divide, scaleAdd, addWeighted, accumulate, accumulateProduct, accumulateSquare,
    .   Mat::convertTo
    """
    pass

def mulTransposed(src, aTa, dst=None, delta=None, scale=None, dtype=None): # real signature unknown; restored from __doc__
    """
    mulTransposed(src, aTa[, dst[, delta[, scale[, dtype]]]]) -> dst
    .   @brief Calculates the product of a matrix and its transposition.
    .   
    .   The function cv::mulTransposed calculates the product of src and its
    .   transposition:
    .   \f[\texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} )^T ( \texttt{src} - \texttt{delta} )\f]
    .   if aTa=true , and
    .   \f[\texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} ) ( \texttt{src} - \texttt{delta} )^T\f]
    .   otherwise. The function is used to calculate the covariance matrix. With
    .   zero delta, it can be used as a faster substitute for general matrix
    .   product A\*B when B=A'
    .   @param src input single-channel matrix. Note that unlike gemm, the
    .   function can multiply not only floating-point matrices.
    .   @param dst output square matrix.
    .   @param aTa Flag specifying the multiplication ordering. See the
    .   description below.
    .   @param delta Optional delta matrix subtracted from src before the
    .   multiplication. When the matrix is empty ( delta=noArray() ), it is
    .   assumed to be zero, that is, nothing is subtracted. If it has the same
    .   size as src , it is simply subtracted. Otherwise, it is "repeated" (see
    .   repeat ) to cover the full src and then subtracted. Type of the delta
    .   matrix, when it is not empty, must be the same as the type of created
    .   output matrix. See the dtype parameter description below.
    .   @param scale Optional scale factor for the matrix product.
    .   @param dtype Optional type of the output matrix. When it is negative,
    .   the output matrix will have the same type as src . Otherwise, it will be
    .   type=CV_MAT_DEPTH(dtype) that should be either CV_32F or CV_64F .
    .   @sa calcCovarMatrix, gemm, repeat, reduce
    """
    pass

def namedWindow(winname, flags=None): # real signature unknown; restored from __doc__
    """
    namedWindow(winname[, flags]) -> None
    .   @brief Creates a window.
    .   
    .   The function namedWindow creates a window that can be used as a placeholder for images and
    .   trackbars. Created windows are referred to by their names.
    .   
    .   If a window with the same name already exists, the function does nothing.
    .   
    .   You can call cv::destroyWindow or cv::destroyAllWindows to close the window and de-allocate any associated
    .   memory usage. For a simple program, you do not really have to call these functions because all the
    .   resources and windows of the application are closed automatically by the operating system upon exit.
    .   
    .   @note
    .   
    .   Qt backend supports additional flags:
    .   -   **WINDOW_NORMAL or WINDOW_AUTOSIZE:** WINDOW_NORMAL enables you to resize the
    .   window, whereas WINDOW_AUTOSIZE adjusts automatically the window size to fit the
    .   displayed image (see imshow ), and you cannot change the window size manually.
    .   -   **WINDOW_FREERATIO or WINDOW_KEEPRATIO:** WINDOW_FREERATIO adjusts the image
    .   with no respect to its ratio, whereas WINDOW_KEEPRATIO keeps the image ratio.
    .   -   **WINDOW_GUI_NORMAL or WINDOW_GUI_EXPANDED:** WINDOW_GUI_NORMAL is the old way to draw the window
    .   without statusbar and toolbar, whereas WINDOW_GUI_EXPANDED is a new enhanced GUI.
    .   By default, flags == WINDOW_AUTOSIZE | WINDOW_KEEPRATIO | WINDOW_GUI_EXPANDED
    .   
    .   @param winname Name of the window in the window caption that may be used as a window identifier.
    .   @param flags Flags of the window. The supported flags are: (cv::WindowFlags)
    """
    pass

def norm(src1, normType=None, mask=None): # real signature unknown; restored from __doc__
    """
    norm(src1[, normType[, mask]]) -> retval
    .   @brief Calculates an absolute array norm, an absolute difference norm, or a
    .   relative difference norm.
    .   
    .   The function cv::norm calculates an absolute norm of src1 (when there is no
    .   src2 ):
    .   
    .   \f[norm =  \forkthree{\|\texttt{src1}\|_{L_{\infty}} =  \max _I | \texttt{src1} (I)|}{if  \(\texttt{normType} = \texttt{NORM_INF}\) }
    .   { \| \texttt{src1} \| _{L_1} =  \sum _I | \texttt{src1} (I)|}{if  \(\texttt{normType} = \texttt{NORM_L1}\) }
    .   { \| \texttt{src1} \| _{L_2} =  \sqrt{\sum_I \texttt{src1}(I)^2} }{if  \(\texttt{normType} = \texttt{NORM_L2}\) }\f]
    .   
    .   or an absolute or relative difference norm if src2 is there:
    .   
    .   \f[norm =  \forkthree{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}} =  \max _I | \texttt{src1} (I) -  \texttt{src2} (I)|}{if  \(\texttt{normType} = \texttt{NORM_INF}\) }
    .   { \| \texttt{src1} - \texttt{src2} \| _{L_1} =  \sum _I | \texttt{src1} (I) -  \texttt{src2} (I)|}{if  \(\texttt{normType} = \texttt{NORM_L1}\) }
    .   { \| \texttt{src1} - \texttt{src2} \| _{L_2} =  \sqrt{\sum_I (\texttt{src1}(I) - \texttt{src2}(I))^2} }{if  \(\texttt{normType} = \texttt{NORM_L2}\) }\f]
    .   
    .   or
    .   
    .   \f[norm =  \forkthree{\frac{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}}    }{\|\texttt{src2}\|_{L_{\infty}} }}{if  \(\texttt{normType} = \texttt{NORM_RELATIVE_INF}\) }
    .   { \frac{\|\texttt{src1}-\texttt{src2}\|_{L_1} }{\|\texttt{src2}\|_{L_1}} }{if  \(\texttt{normType} = \texttt{NORM_RELATIVE_L1}\) }
    .   { \frac{\|\texttt{src1}-\texttt{src2}\|_{L_2} }{\|\texttt{src2}\|_{L_2}} }{if  \(\texttt{normType} = \texttt{NORM_RELATIVE_L2}\) }\f]
    .   
    .   The function cv::norm returns the calculated norm.
    .   
    .   When the mask parameter is specified and it is not empty, the norm is
    .   calculated only over the region specified by the mask.
    .   
    .   A multi-channel input arrays are treated as a single-channel, that is,
    .   the results for all channels are combined.
    .   
    .   @param src1 first input array.
    .   @param normType type of the norm (see cv::NormTypes).
    .   @param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type.
    
    
    
    norm(src1, src2[, normType[, mask]]) -> retval
    .   @overload
    .   @param src1 first input array.
    .   @param src2 second input array of the same size and the same type as src1.
    .   @param normType type of the norm (cv::NormTypes).
    .   @param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type.
    """
    pass

def normalize(src, dst, alpha=None, beta=None, norm_type=None, dtype=None, mask=None): # real signature unknown; restored from __doc__
    """
    normalize(src, dst[, alpha[, beta[, norm_type[, dtype[, mask]]]]]) -> dst
    .   @brief Normalizes the norm or value range of an array.
    .   
    .   The function cv::normalize normalizes scale and shift the input array elements so that
    .   \f[\| \texttt{dst} \| _{L_p}= \texttt{alpha}\f]
    .   (where p=Inf, 1 or 2) when normType=NORM_INF, NORM_L1, or NORM_L2, respectively; or so that
    .   \f[\min _I  \texttt{dst} (I)= \texttt{alpha} , \, \, \max _I  \texttt{dst} (I)= \texttt{beta}\f]
    .   
    .   when normType=NORM_MINMAX (for dense arrays only). The optional mask specifies a sub-array to be
    .   normalized. This means that the norm or min-n-max are calculated over the sub-array, and then this
    .   sub-array is modified to be normalized. If you want to only use the mask to calculate the norm or
    .   min-max but modify the whole array, you can use norm and Mat::convertTo.
    .   
    .   In case of sparse matrices, only the non-zero values are analyzed and transformed. Because of this,
    .   the range transformation for sparse matrices is not allowed since it can shift the zero level.
    .   
    .   Possible usage with some positive example data:
    .   @code{.cpp}
    .   vector<double> positiveData = { 2.0, 8.0, 10.0 };
    .   vector<double> normalizedData_l1, normalizedData_l2, normalizedData_inf, normalizedData_minmax;
    .   
    .   // Norm to probability (total count)
    .   // sum(numbers) = 20.0
    .   // 2.0      0.1     (2.0/20.0)
    .   // 8.0      0.4     (8.0/20.0)
    .   // 10.0     0.5     (10.0/20.0)
    .   normalize(positiveData, normalizedData_l1, 1.0, 0.0, NORM_L1);
    .   
    .   // Norm to unit vector: ||positiveData|| = 1.0
    .   // 2.0      0.15
    .   // 8.0      0.62
    .   // 10.0     0.77
    .   normalize(positiveData, normalizedData_l2, 1.0, 0.0, NORM_L2);
    .   
    .   // Norm to max element
    .   // 2.0      0.2     (2.0/10.0)
    .   // 8.0      0.8     (8.0/10.0)
    .   // 10.0     1.0     (10.0/10.0)
    .   normalize(positiveData, normalizedData_inf, 1.0, 0.0, NORM_INF);
    .   
    .   // Norm to range [0.0;1.0]
    .   // 2.0      0.0     (shift to left border)
    .   // 8.0      0.75    (6.0/8.0)
    .   // 10.0     1.0     (shift to right border)
    .   normalize(positiveData, normalizedData_minmax, 1.0, 0.0, NORM_MINMAX);
    .   @endcode
    .   
    .   @param src input array.
    .   @param dst output array of the same size as src .
    .   @param alpha norm value to normalize to or the lower range boundary in case of the range
    .   normalization.
    .   @param beta upper range boundary in case of the range normalization; it is not used for the norm
    .   normalization.
    .   @param norm_type normalization type (see cv::NormTypes).
    .   @param dtype when negative, the output array has the same type as src; otherwise, it has the same
    .   number of channels as src and the depth =CV_MAT_DEPTH(dtype).
    .   @param mask optional operation mask.
    .   @sa norm, Mat::convertTo, SparseMat::convertTo
    """
    pass

def ORB_create(nfeatures=None, scaleFactor=None, nlevels=None, edgeThreshold=None, firstLevel=None, WTA_K=None, scoreType=None, patchSize=None, fastThreshold=None): # real signature unknown; restored from __doc__
    """
    ORB_create([, nfeatures[, scaleFactor[, nlevels[, edgeThreshold[, firstLevel[, WTA_K[, scoreType[, patchSize[, fastThreshold]]]]]]]]]) -> retval
    .   @brief The ORB constructor
    .   
    .   @param nfeatures The maximum number of features to retain.
    .   @param scaleFactor Pyramid decimation ratio, greater than 1. scaleFactor==2 means the classical
    .   pyramid, where each next level has 4x less pixels than the previous, but such a big scale factor
    .   will degrade feature matching scores dramatically. On the other hand, too close to 1 scale factor
    .   will mean that to cover certain scale range you will need more pyramid levels and so the speed
    .   will suffer.
    .   @param nlevels The number of pyramid levels. The smallest level will have linear size equal to
    .   input_image_linear_size/pow(scaleFactor, nlevels).
    .   @param edgeThreshold This is size of the border where the features are not detected. It should
    .   roughly match the patchSize parameter.
    .   @param firstLevel It should be 0 in the current implementation.
    .   @param WTA_K The number of points that produce each element of the oriented BRIEF descriptor. The
    .   default value 2 means the BRIEF where we take a random point pair and compare their brightnesses,
    .   so we get 0/1 response. Other possible values are 3 and 4. For example, 3 means that we take 3
    .   random points (of course, those point coordinates are random, but they are generated from the
    .   pre-defined seed, so each element of BRIEF descriptor is computed deterministically from the pixel
    .   rectangle), find point of maximum brightness and output index of the winner (0, 1 or 2). Such
    .   output will occupy 2 bits, and therefore it will need a special variant of Hamming distance,
    .   denoted as NORM_HAMMING2 (2 bits per bin). When WTA_K=4, we take 4 random points to compute each
    .   bin (that will also occupy 2 bits with possible values 0, 1, 2 or 3).
    .   @param scoreType The default HARRIS_SCORE means that Harris algorithm is used to rank features
    .   (the score is written to KeyPoint::score and is used to retain best nfeatures features);
    .   FAST_SCORE is alternative value of the parameter that produces slightly less stable keypoints,
    .   but it is a little faster to compute.
    .   @param patchSize size of the patch used by the oriented BRIEF descriptor. Of course, on smaller
    .   pyramid layers the perceived image area covered by a feature will be larger.
    .   @param fastThreshold
    """
    pass

def patchNaNs(a, val=None): # real signature unknown; restored from __doc__
    """
    patchNaNs(a[, val]) -> a
    .   @brief converts NaN's to the given number
    """
    pass

def PCABackProject(data, mean, eigenvectors, result=None): # real signature unknown; restored from __doc__
    """
    PCABackProject(data, mean, eigenvectors[, result]) -> result
    .   wrap PCA::backProject
    """
    pass

def PCACompute(data, mean, eigenvectors=None, maxComponents=None): # real signature unknown; restored from __doc__
    """
    PCACompute(data, mean[, eigenvectors[, maxComponents]]) -> mean, eigenvectors
    .   wrap PCA::operator()
    
    
    
    PCACompute(data, mean, retainedVariance[, eigenvectors]) -> mean, eigenvectors
    .   wrap PCA::operator()
    """
    pass

def PCAProject(data, mean, eigenvectors, result=None): # real signature unknown; restored from __doc__
    """
    PCAProject(data, mean, eigenvectors[, result]) -> result
    .   wrap PCA::project
    """
    pass

def pencilSketch(src, dst1=None, dst2=None, sigma_s=None, sigma_r=None, shade_factor=None): # real signature unknown; restored from __doc__
    """
    pencilSketch(src[, dst1[, dst2[, sigma_s[, sigma_r[, shade_factor]]]]]) -> dst1, dst2
    .   @brief Pencil-like non-photorealistic line drawing
    .   
    .   @param src Input 8-bit 3-channel image.
    .   @param dst1 Output 8-bit 1-channel image.
    .   @param dst2 Output image with the same size and type as src.
    .   @param sigma_s Range between 0 to 200.
    .   @param sigma_r Range between 0 to 1.
    .   @param shade_factor Range between 0 to 0.1.
    """
    pass

def perspectiveTransform(src, m, dst=None): # real signature unknown; restored from __doc__
    """
    perspectiveTransform(src, m[, dst]) -> dst
    .   @brief Performs the perspective matrix transformation of vectors.
    .   
    .   The function cv::perspectiveTransform transforms every element of src by
    .   treating it as a 2D or 3D vector, in the following way:
    .   \f[(x, y, z)  \rightarrow (x'/w, y'/w, z'/w)\f]
    .   where
    .   \f[(x', y', z', w') =  \texttt{mat} \cdot \begin{bmatrix} x & y & z & 1  \end{bmatrix}\f]
    .   and
    .   \f[w =  \fork{w'}{if \(w' \ne 0\)}{\infty}{otherwise}\f]
    .   
    .   Here a 3D vector transformation is shown. In case of a 2D vector
    .   transformation, the z component is omitted.
    .   
    .   @note The function transforms a sparse set of 2D or 3D vectors. If you
    .   want to transform an image using perspective transformation, use
    .   warpPerspective . If you have an inverse problem, that is, you want to
    .   compute the most probable perspective transformation out of several
    .   pairs of corresponding points, you can use getPerspectiveTransform or
    .   findHomography .
    .   @param src input two-channel or three-channel floating-point array; each
    .   element is a 2D/3D vector to be transformed.
    .   @param dst output array of the same size and type as src.
    .   @param m 3x3 or 4x4 floating-point transformation matrix.
    .   @sa  transform, warpPerspective, getPerspectiveTransform, findHomography
    """
    pass

def phase(x, y, angle=None, angleInDegrees=None): # real signature unknown; restored from __doc__
    """
    phase(x, y[, angle[, angleInDegrees]]) -> angle
    .   @brief Calculates the rotation angle of 2D vectors.
    .   
    .   The function cv::phase calculates the rotation angle of each 2D vector that
    .   is formed from the corresponding elements of x and y :
    .   \f[\texttt{angle} (I) =  \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))\f]
    .   
    .   The angle estimation accuracy is about 0.3 degrees. When x(I)=y(I)=0 ,
    .   the corresponding angle(I) is set to 0.
    .   @param x input floating-point array of x-coordinates of 2D vectors.
    .   @param y input array of y-coordinates of 2D vectors; it must have the
    .   same size and the same type as x.
    .   @param angle output array of vector angles; it has the same size and
    .   same type as x .
    .   @param angleInDegrees when true, the function calculates the angle in
    .   degrees, otherwise, they are measured in radians.
    """
    pass

def phaseCorrelate(src1, src2, window=None): # real signature unknown; restored from __doc__
    """
    phaseCorrelate(src1, src2[, window]) -> retval, response
    .   @brief The function is used to detect translational shifts that occur between two images.
    .   
    .   The operation takes advantage of the Fourier shift theorem for detecting the translational shift in
    .   the frequency domain. It can be used for fast image registration as well as motion estimation. For
    .   more information please see <http://en.wikipedia.org/wiki/Phase_correlation>
    .   
    .   Calculates the cross-power spectrum of two supplied source arrays. The arrays are padded if needed
    .   with getOptimalDFTSize.
    .   
    .   The function performs the following equations:
    .   - First it applies a Hanning window (see <http://en.wikipedia.org/wiki/Hann_function>) to each
    .   image to remove possible edge effects. This window is cached until the array size changes to speed
    .   up processing time.
    .   - Next it computes the forward DFTs of each source array:
    .   \f[\mathbf{G}_a = \mathcal{F}\{src_1\}, \; \mathbf{G}_b = \mathcal{F}\{src_2\}\f]
    .   where \f$\mathcal{F}\f$ is the forward DFT.
    .   - It then computes the cross-power spectrum of each frequency domain array:
    .   \f[R = \frac{ \mathbf{G}_a \mathbf{G}_b^*}{|\mathbf{G}_a \mathbf{G}_b^*|}\f]
    .   - Next the cross-correlation is converted back into the time domain via the inverse DFT:
    .   \f[r = \mathcal{F}^{-1}\{R\}\f]
    .   - Finally, it computes the peak location and computes a 5x5 weighted centroid around the peak to
    .   achieve sub-pixel accuracy.
    .   \f[(\Delta x, \Delta y) = \texttt{weightedCentroid} \{\arg \max_{(x, y)}\{r\}\}\f]
    .   - If non-zero, the response parameter is computed as the sum of the elements of r within the 5x5
    .   centroid around the peak location. It is normalized to a maximum of 1 (meaning there is a single
    .   peak) and will be smaller when there are multiple peaks.
    .   
    .   @param src1 Source floating point array (CV_32FC1 or CV_64FC1)
    .   @param src2 Source floating point array (CV_32FC1 or CV_64FC1)
    .   @param window Floating point array with windowing coefficients to reduce edge effects (optional).
    .   @param response Signal power within the 5x5 centroid around the peak, between 0 and 1 (optional).
    .   @returns detected phase shift (sub-pixel) between the two arrays.
    .   
    .   @sa dft, getOptimalDFTSize, idft, mulSpectrums createHanningWindow
    """
    pass

def pointPolygonTest(contour, pt, measureDist): # real signature unknown; restored from __doc__
    """
    pointPolygonTest(contour, pt, measureDist) -> retval
    .   @brief Performs a point-in-contour test.
    .   
    .   The function determines whether the point is inside a contour, outside, or lies on an edge (or
    .   coincides with a vertex). It returns positive (inside), negative (outside), or zero (on an edge)
    .   value, correspondingly. When measureDist=false , the return value is +1, -1, and 0, respectively.
    .   Otherwise, the return value is a signed distance between the point and the nearest contour edge.
    .   
    .   See below a sample output of the function where each image pixel is tested against the contour:
    .   
    .   ![sample output](pics/pointpolygon.png)
    .   
    .   @param contour Input contour.
    .   @param pt Point tested against the contour.
    .   @param measureDist If true, the function estimates the signed distance from the point to the
    .   nearest contour edge. Otherwise, the function only checks if the point is inside a contour or not.
    """
    pass

def polarToCart(magnitude, angle, x=None, y=None, angleInDegrees=None): # real signature unknown; restored from __doc__
    """
    polarToCart(magnitude, angle[, x[, y[, angleInDegrees]]]) -> x, y
    .   @brief Calculates x and y coordinates of 2D vectors from their magnitude and angle.
    .   
    .   The function cv::polarToCart calculates the Cartesian coordinates of each 2D
    .   vector represented by the corresponding elements of magnitude and angle:
    .   \f[\begin{array}{l} \texttt{x} (I) =  \texttt{magnitude} (I) \cos ( \texttt{angle} (I)) \\ \texttt{y} (I) =  \texttt{magnitude} (I) \sin ( \texttt{angle} (I)) \\ \end{array}\f]
    .   
    .   The relative accuracy of the estimated coordinates is about 1e-6.
    .   @param magnitude input floating-point array of magnitudes of 2D vectors;
    .   it can be an empty matrix (=Mat()), in this case, the function assumes
    .   that all the magnitudes are =1; if it is not empty, it must have the
    .   same size and type as angle.
    .   @param angle input floating-point array of angles of 2D vectors.
    .   @param x output array of x-coordinates of 2D vectors; it has the same
    .   size and type as angle.
    .   @param y output array of y-coordinates of 2D vectors; it has the same
    .   size and type as angle.
    .   @param angleInDegrees when true, the input angles are measured in
    .   degrees, otherwise, they are measured in radians.
    .   @sa cartToPolar, magnitude, phase, exp, log, pow, sqrt
    """
    pass

def polylines(img, pts, isClosed, color, thickness=None, lineType=None, shift=None): # real signature unknown; restored from __doc__
    """
    polylines(img, pts, isClosed, color[, thickness[, lineType[, shift]]]) -> img
    .   @brief Draws several polygonal curves.
    .   
    .   @param img Image.
    .   @param pts Array of polygonal curves.
    .   @param isClosed Flag indicating whether the drawn polylines are closed or not. If they are closed,
    .   the function draws a line from the last vertex of each curve to its first vertex.
    .   @param color Polyline color.
    .   @param thickness Thickness of the polyline edges.
    .   @param lineType Type of the line segments. See the line description.
    .   @param shift Number of fractional bits in the vertex coordinates.
    .   
    .   The function polylines draws one or more polygonal curves.
    """
    pass

def pow(src, power, dst=None): # real signature unknown; restored from __doc__
    """
    pow(src, power[, dst]) -> dst
    .   @brief Raises every array element to a power.
    .   
    .   The function cv::pow raises every element of the input array to power :
    .   \f[\texttt{dst} (I) =  \fork{\texttt{src}(I)^{power}}{if \(\texttt{power}\) is integer}{|\texttt{src}(I)|^{power}}{otherwise}\f]
    .   
    .   So, for a non-integer power exponent, the absolute values of input array
    .   elements are used. However, it is possible to get true values for
    .   negative values using some extra operations. In the example below,
    .   computing the 5th root of array src shows:
    .   @code{.cpp}
    .   Mat mask = src < 0;
    .   pow(src, 1./5, dst);
    .   subtract(Scalar::all(0), dst, dst, mask);
    .   @endcode
    .   For some values of power, such as integer values, 0.5 and -0.5,
    .   specialized faster algorithms are used.
    .   
    .   Special values (NaN, Inf) are not handled.
    .   @param src input array.
    .   @param power exponent of power.
    .   @param dst output array of the same size and type as src.
    .   @sa sqrt, exp, log, cartToPolar, polarToCart
    """
    pass

def preCornerDetect(src, ksize, dst=None, borderType=None): # real signature unknown; restored from __doc__
    """
    preCornerDetect(src, ksize[, dst[, borderType]]) -> dst
    .   @brief Calculates a feature map for corner detection.
    .   
    .   The function calculates the complex spatial derivative-based function of the source image
    .   
    .   \f[\texttt{dst} = (D_x  \texttt{src} )^2  \cdot D_{yy}  \texttt{src} + (D_y  \texttt{src} )^2  \cdot D_{xx}  \texttt{src} - 2 D_x  \texttt{src} \cdot D_y  \texttt{src} \cdot D_{xy}  \texttt{src}\f]
    .   
    .   where \f$D_x\f$,\f$D_y\f$ are the first image derivatives, \f$D_{xx}\f$,\f$D_{yy}\f$ are the second image
    .   derivatives, and \f$D_{xy}\f$ is the mixed derivative.
    .   
    .   The corners can be found as local maximums of the functions, as shown below:
    .   @code
    .   Mat corners, dilated_corners;
    .   preCornerDetect(image, corners, 3);
    .   // dilation with 3x3 rectangular structuring element
    .   dilate(corners, dilated_corners, Mat(), 1);
    .   Mat corner_mask = corners == dilated_corners;
    .   @endcode
    .   
    .   @param src Source single-channel 8-bit of floating-point image.
    .   @param dst Output image that has the type CV_32F and the same size as src .
    .   @param ksize %Aperture size of the Sobel .
    .   @param borderType Pixel extrapolation method. See cv::BorderTypes.
    """
    pass

def projectPoints(objectPoints, rvec, tvec, cameraMatrix, distCoeffs, imagePoints=None, jacobian=None, aspectRatio=None): # real signature unknown; restored from __doc__
    """
    projectPoints(objectPoints, rvec, tvec, cameraMatrix, distCoeffs[, imagePoints[, jacobian[, aspectRatio]]]) -> imagePoints, jacobian
    .   @brief Projects 3D points to an image plane.
    .   
    .   @param objectPoints Array of object points, 3xN/Nx3 1-channel or 1xN/Nx1 3-channel (or
    .   vector\<Point3f\> ), where N is the number of points in the view.
    .   @param rvec Rotation vector. See Rodrigues for details.
    .   @param tvec Translation vector.
    .   @param cameraMatrix Camera matrix \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$ .
    .   @param distCoeffs Input vector of distortion coefficients
    .   \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
    .   4, 5, 8, 12 or 14 elements. If the vector is empty, the zero distortion coefficients are assumed.
    .   @param imagePoints Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or
    .   vector\<Point2f\> .
    .   @param jacobian Optional output 2Nx(10+\<numDistCoeffs\>) jacobian matrix of derivatives of image
    .   points with respect to components of the rotation vector, translation vector, focal lengths,
    .   coordinates of the principal point and the distortion coefficients. In the old interface different
    .   components of the jacobian are returned via different output parameters.
    .   @param aspectRatio Optional "fixed aspect ratio" parameter. If the parameter is not 0, the
    .   function assumes that the aspect ratio (*fx/fy*) is fixed and correspondingly adjusts the jacobian
    .   matrix.
    .   
    .   The function computes projections of 3D points to the image plane given intrinsic and extrinsic
    .   camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of
    .   image points coordinates (as functions of all the input parameters) with respect to the particular
    .   parameters, intrinsic and/or extrinsic. The Jacobians are used during the global optimization in
    .   calibrateCamera, solvePnP, and stereoCalibrate . The function itself can also be used to compute a
    .   re-projection error given the current intrinsic and extrinsic parameters.
    .   
    .   @note By setting rvec=tvec=(0,0,0) or by setting cameraMatrix to a 3x3 identity matrix, or by
    .   passing zero distortion coefficients, you can get various useful partial cases of the function. This
    .   means that you can compute the distorted coordinates for a sparse set of points or apply a
    .   perspective transformation (and also compute the derivatives) in the ideal zero-distortion setup.
    """
    pass

def PSNR(src1, src2): # real signature unknown; restored from __doc__
    """
    PSNR(src1, src2) -> retval
    .   @brief computes PSNR image/video quality metric
    .   
    .   see http://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio for details
    .   @todo document
    """
    pass

def putText(img, text, org, fontFace, fontScale, color, thickness=None, lineType=None, bottomLeftOrigin=None): # real signature unknown; restored from __doc__
    """
    putText(img, text, org, fontFace, fontScale, color[, thickness[, lineType[, bottomLeftOrigin]]]) -> img
    .   @brief Draws a text string.
    .   
    .   The function putText renders the specified text string in the image. Symbols that cannot be rendered
    .   using the specified font are replaced by question marks. See getTextSize for a text rendering code
    .   example.
    .   
    .   @param img Image.
    .   @param text Text string to be drawn.
    .   @param org Bottom-left corner of the text string in the image.
    .   @param fontFace Font type, see cv::HersheyFonts.
    .   @param fontScale Font scale factor that is multiplied by the font-specific base size.
    .   @param color Text color.
    .   @param thickness Thickness of the lines used to draw a text.
    .   @param lineType Line type. See the line for details.
    .   @param bottomLeftOrigin When true, the image data origin is at the bottom-left corner. Otherwise,
    .   it is at the top-left corner.
    """
    pass

def pyrDown(src, dst=None, dstsize=None, borderType=None): # real signature unknown; restored from __doc__
    """
    pyrDown(src[, dst[, dstsize[, borderType]]]) -> dst
    .   @brief Blurs an image and downsamples it.
    .   
    .   By default, size of the output image is computed as `Size((src.cols+1)/2, (src.rows+1)/2)`, but in
    .   any case, the following conditions should be satisfied:
    .   
    .   \f[\begin{array}{l} | \texttt{dstsize.width} *2-src.cols| \leq 2 \\ | \texttt{dstsize.height} *2-src.rows| \leq 2 \end{array}\f]
    .   
    .   The function performs the downsampling step of the Gaussian pyramid construction. First, it
    .   convolves the source image with the kernel:
    .   
    .   \f[\frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1  \\ 4 & 16 & 24 & 16 & 4  \\ 6 & 24 & 36 & 24 & 6  \\ 4 & 16 & 24 & 16 & 4  \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}\f]
    .   
    .   Then, it downsamples the image by rejecting even rows and columns.
    .   
    .   @param src input image.
    .   @param dst output image; it has the specified size and the same type as src.
    .   @param dstsize size of the output image.
    .   @param borderType Pixel extrapolation method, see cv::BorderTypes (BORDER_CONSTANT isn't supported)
    """
    pass

def pyrMeanShiftFiltering(src, sp, sr, dst=None, maxLevel=None, termcrit=None): # real signature unknown; restored from __doc__
    """
    pyrMeanShiftFiltering(src, sp, sr[, dst[, maxLevel[, termcrit]]]) -> dst
    .   @brief Performs initial step of meanshift segmentation of an image.
    .   
    .   The function implements the filtering stage of meanshift segmentation, that is, the output of the
    .   function is the filtered "posterized" image with color gradients and fine-grain texture flattened.
    .   At every pixel (X,Y) of the input image (or down-sized input image, see below) the function executes
    .   meanshift iterations, that is, the pixel (X,Y) neighborhood in the joint space-color hyperspace is
    .   considered:
    .   
    .   \f[(x,y): X- \texttt{sp} \le x  \le X+ \texttt{sp} , Y- \texttt{sp} \le y  \le Y+ \texttt{sp} , ||(R,G,B)-(r,g,b)||   \le \texttt{sr}\f]
    .   
    .   where (R,G,B) and (r,g,b) are the vectors of color components at (X,Y) and (x,y), respectively
    .   (though, the algorithm does not depend on the color space used, so any 3-component color space can
    .   be used instead). Over the neighborhood the average spatial value (X',Y') and average color vector
    .   (R',G',B') are found and they act as the neighborhood center on the next iteration:
    .   
    .   \f[(X,Y)~(X',Y'), (R,G,B)~(R',G',B').\f]
    .   
    .   After the iterations over, the color components of the initial pixel (that is, the pixel from where
    .   the iterations started) are set to the final value (average color at the last iteration):
    .   
    .   \f[I(X,Y) <- (R*,G*,B*)\f]
    .   
    .   When maxLevel \> 0, the gaussian pyramid of maxLevel+1 levels is built, and the above procedure is
    .   run on the smallest layer first. After that, the results are propagated to the larger layer and the
    .   iterations are run again only on those pixels where the layer colors differ by more than sr from the
    .   lower-resolution layer of the pyramid. That makes boundaries of color regions sharper. Note that the
    .   results will be actually different from the ones obtained by running the meanshift procedure on the
    .   whole original image (i.e. when maxLevel==0).
    .   
    .   @param src The source 8-bit, 3-channel image.
    .   @param dst The destination image of the same format and the same size as the source.
    .   @param sp The spatial window radius.
    .   @param sr The color window radius.
    .   @param maxLevel Maximum level of the pyramid for the segmentation.
    .   @param termcrit Termination criteria: when to stop meanshift iterations.
    """
    pass

def pyrUp(src, dst=None, dstsize=None, borderType=None): # real signature unknown; restored from __doc__
    """
    pyrUp(src[, dst[, dstsize[, borderType]]]) -> dst
    .   @brief Upsamples an image and then blurs it.
    .   
    .   By default, size of the output image is computed as `Size(src.cols\*2, (src.rows\*2)`, but in any
    .   case, the following conditions should be satisfied:
    .   
    .   \f[\begin{array}{l} | \texttt{dstsize.width} -src.cols*2| \leq  ( \texttt{dstsize.width}   \mod  2)  \\ | \texttt{dstsize.height} -src.rows*2| \leq  ( \texttt{dstsize.height}   \mod  2) \end{array}\f]
    .   
    .   The function performs the upsampling step of the Gaussian pyramid construction, though it can
    .   actually be used to construct the Laplacian pyramid. First, it upsamples the source image by
    .   injecting even zero rows and columns and then convolves the result with the same kernel as in
    .   pyrDown multiplied by 4.
    .   
    .   @param src input image.
    .   @param dst output image. It has the specified size and the same type as src .
    .   @param dstsize size of the output image.
    .   @param borderType Pixel extrapolation method, see cv::BorderTypes (only BORDER_DEFAULT is supported)
    """
    pass

def randn(dst, mean, stddev): # real signature unknown; restored from __doc__
    """
    randn(dst, mean, stddev) -> dst
    .   @brief Fills the array with normally distributed random numbers.
    .   
    .   The function cv::randn fills the matrix dst with normally distributed random numbers with the specified
    .   mean vector and the standard deviation matrix. The generated random numbers are clipped to fit the
    .   value range of the output array data type.
    .   @param dst output array of random numbers; the array must be pre-allocated and have 1 to 4 channels.
    .   @param mean mean value (expectation) of the generated random numbers.
    .   @param stddev standard deviation of the generated random numbers; it can be either a vector (in
    .   which case a diagonal standard deviation matrix is assumed) or a square matrix.
    .   @sa RNG, randu
    """
    pass

def randShuffle(dst, iterFactor=None): # real signature unknown; restored from __doc__
    """
    randShuffle(dst[, iterFactor]) -> dst
    .   @brief Shuffles the array elements randomly.
    .   
    .   The function cv::randShuffle shuffles the specified 1D array by randomly choosing pairs of elements and
    .   swapping them. The number of such swap operations will be dst.rows\*dst.cols\*iterFactor .
    .   @param dst input/output numerical 1D array.
    .   @param iterFactor scale factor that determines the number of random swap operations (see the details
    .   below).
    .   @param rng optional random number generator used for shuffling; if it is zero, theRNG () is used
    .   instead.
    .   @sa RNG, sort
    """
    pass

def randu(dst, low, high): # real signature unknown; restored from __doc__
    """
    randu(dst, low, high) -> dst
    .   @brief Generates a single uniformly-distributed random number or an array of random numbers.
    .   
    .   Non-template variant of the function fills the matrix dst with uniformly-distributed
    .   random numbers from the specified range:
    .   \f[\texttt{low} _c  \leq \texttt{dst} (I)_c <  \texttt{high} _c\f]
    .   @param dst output array of random numbers; the array must be pre-allocated.
    .   @param low inclusive lower boundary of the generated random numbers.
    .   @param high exclusive upper boundary of the generated random numbers.
    .   @sa RNG, randn, theRNG
    """
    pass

def recoverPose(E, points1, points2, cameraMatrix, R=None, t=None, mask=None): # real signature unknown; restored from __doc__
    """
    recoverPose(E, points1, points2, cameraMatrix[, R[, t[, mask]]]) -> retval, R, t, mask
    .   @brief Recover relative camera rotation and translation from an estimated essential matrix and the
    .   corresponding points in two images, using cheirality check. Returns the number of inliers which pass
    .   the check.
    .   
    .   @param E The input essential matrix.
    .   @param points1 Array of N 2D points from the first image. The point coordinates should be
    .   floating-point (single or double precision).
    .   @param points2 Array of the second image points of the same size and format as points1 .
    .   @param cameraMatrix Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
    .   Note that this function assumes that points1 and points2 are feature points from cameras with the
    .   same camera matrix.
    .   @param R Recovered relative rotation.
    .   @param t Recoverd relative translation.
    .   @param mask Input/output mask for inliers in points1 and points2.
    .   :   If it is not empty, then it marks inliers in points1 and points2 for then given essential
    .   matrix E. Only these inliers will be used to recover pose. In the output mask only inliers
    .   which pass the cheirality check.
    .   This function decomposes an essential matrix using decomposeEssentialMat and then verifies possible
    .   pose hypotheses by doing cheirality check. The cheirality check basically means that the
    .   triangulated 3D points should have positive depth. Some details can be found in @cite Nister03 .
    .   
    .   This function can be used to process output E and mask from findEssentialMat. In this scenario,
    .   points1 and points2 are the same input for findEssentialMat. :
    .   @code
    .   // Example. Estimation of fundamental matrix using the RANSAC algorithm
    .   int point_count = 100;
    .   vector<Point2f> points1(point_count);
    .   vector<Point2f> points2(point_count);
    .   
    .   // initialize the points here ...
    .   for( int i = 0; i < point_count; i++ )
    .   {
    .   points1[i] = ...;
    .   points2[i] = ...;
    .   }
    .   
    .   // cametra matrix with both focal lengths = 1, and principal point = (0, 0)
    .   Mat cameraMatrix = Mat::eye(3, 3, CV_64F);
    .   
    .   Mat E, R, t, mask;
    .   
    .   E = findEssentialMat(points1, points2, cameraMatrix, RANSAC, 0.999, 1.0, mask);
    .   recoverPose(E, points1, points2, cameraMatrix, R, t, mask);
    .   @endcode
    
    
    
    recoverPose(E, points1, points2[, R[, t[, focal[, pp[, mask]]]]]) -> retval, R, t, mask
    .   @overload
    .   @param E The input essential matrix.
    .   @param points1 Array of N 2D points from the first image. The point coordinates should be
    .   floating-point (single or double precision).
    .   @param points2 Array of the second image points of the same size and format as points1 .
    .   @param R Recovered relative rotation.
    .   @param t Recoverd relative translation.
    .   @param focal Focal length of the camera. Note that this function assumes that points1 and points2
    .   are feature points from cameras with same focal length and principal point.
    .   @param pp principal point of the camera.
    .   @param mask Input/output mask for inliers in points1 and points2.
    .   :   If it is not empty, then it marks inliers in points1 and points2 for then given essential
    .   matrix E. Only these inliers will be used to recover pose. In the output mask only inliers
    .   which pass the cheirality check.
    .   
    .   This function differs from the one above that it computes camera matrix from focal length and
    .   principal point:
    .   
    .   \f[K =
    .   \begin{bmatrix}
    .   f & 0 & x_{pp}  \\
    .   0 & f & y_{pp}  \\
    .   0 & 0 & 1
    .   \end{bmatrix}\f]
    
    
    
    recoverPose(E, points1, points2, cameraMatrix, distanceThresh[, R[, t[, mask[, triangulatedPoints]]]]) -> retval, R, t, mask, triangulatedPoints
    .   @overload
    .   @param E The input essential matrix.
    .   @param points1 Array of N 2D points from the first image. The point coordinates should be
    .   floating-point (single or double precision).
    .   @param points2 Array of the second image points of the same size and format as points1.
    .   @param cameraMatrix Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
    .   Note that this function assumes that points1 and points2 are feature points from cameras with the
    .   same camera matrix.
    .   @param R Recovered relative rotation.
    .   @param t Recoverd relative translation.
    .   @param distanceThresh threshold distance which is used to filter out far away points (i.e. infinite points).
    .   @param mask Input/output mask for inliers in points1 and points2.
    .   :   If it is not empty, then it marks inliers in points1 and points2 for then given essential
    .   matrix E. Only these inliers will be used to recover pose. In the output mask only inliers
    .   which pass the cheirality check.
    .   @param triangulatedPoints 3d points which were reconstructed by triangulation.
    """
    pass

def rectangle(img, pt1, pt2, color, thickness=None, lineType=None, shift=None): # real signature unknown; restored from __doc__
    """
    rectangle(img, pt1, pt2, color[, thickness[, lineType[, shift]]]) -> img
    .   @brief Draws a simple, thick, or filled up-right rectangle.
    .   
    .   The function rectangle draws a rectangle outline or a filled rectangle whose two opposite corners
    .   are pt1 and pt2.
    .   
    .   @param img Image.
    .   @param pt1 Vertex of the rectangle.
    .   @param pt2 Vertex of the rectangle opposite to pt1 .
    .   @param color Rectangle color or brightness (grayscale image).
    .   @param thickness Thickness of lines that make up the rectangle. Negative values, like CV_FILLED ,
    .   mean that the function has to draw a filled rectangle.
    .   @param lineType Type of the line. See the line description.
    .   @param shift Number of fractional bits in the point coordinates.
    """
    pass

def rectify3Collinear(cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, cameraMatrix3, distCoeffs3, imgpt1, imgpt3, imageSize, R12, T12, R13, T13, alpha, newImgSize, flags, R1=None, R2=None, R3=None, P1=None, P2=None, P3=None, Q=None): # real signature unknown; restored from __doc__
    """
    rectify3Collinear(cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, cameraMatrix3, distCoeffs3, imgpt1, imgpt3, imageSize, R12, T12, R13, T13, alpha, newImgSize, flags[, R1[, R2[, R3[, P1[, P2[, P3[, Q]]]]]]]) -> retval, R1, R2, R3, P1, P2, P3, Q, roi1, roi2
    .
    """
    pass

def reduce(src, dim, rtype, dst=None, dtype=None): # real signature unknown; restored from __doc__
    """
    reduce(src, dim, rtype[, dst[, dtype]]) -> dst
    .   @brief Reduces a matrix to a vector.
    .   
    .   The function cv::reduce reduces the matrix to a vector by treating the matrix rows/columns as a set of
    .   1D vectors and performing the specified operation on the vectors until a single row/column is
    .   obtained. For example, the function can be used to compute horizontal and vertical projections of a
    .   raster image. In case of REDUCE_MAX and REDUCE_MIN , the output image should have the same type as the source one.
    .   In case of REDUCE_SUM and REDUCE_AVG , the output may have a larger element bit-depth to preserve accuracy.
    .   And multi-channel arrays are also supported in these two reduction modes.
    .   @param src input 2D matrix.
    .   @param dst output vector. Its size and type is defined by dim and dtype parameters.
    .   @param dim dimension index along which the matrix is reduced. 0 means that the matrix is reduced to
    .   a single row. 1 means that the matrix is reduced to a single column.
    .   @param rtype reduction operation that could be one of cv::ReduceTypes
    .   @param dtype when negative, the output vector will have the same type as the input matrix,
    .   otherwise, its type will be CV_MAKE_TYPE(CV_MAT_DEPTH(dtype), src.channels()).
    .   @sa repeat
    """
    pass

def remap(src, map1, map2, interpolation, dst=None, borderMode=None, borderValue=None): # real signature unknown; restored from __doc__
    """
    remap(src, map1, map2, interpolation[, dst[, borderMode[, borderValue]]]) -> dst
    .   @brief Applies a generic geometrical transformation to an image.
    .   
    .   The function remap transforms the source image using the specified map:
    .   
    .   \f[\texttt{dst} (x,y) =  \texttt{src} (map_x(x,y),map_y(x,y))\f]
    .   
    .   where values of pixels with non-integer coordinates are computed using one of available
    .   interpolation methods. \f$map_x\f$ and \f$map_y\f$ can be encoded as separate floating-point maps
    .   in \f$map_1\f$ and \f$map_2\f$ respectively, or interleaved floating-point maps of \f$(x,y)\f$ in
    .   \f$map_1\f$, or fixed-point maps created by using convertMaps. The reason you might want to
    .   convert from floating to fixed-point representations of a map is that they can yield much faster
    .   (\~2x) remapping operations. In the converted case, \f$map_1\f$ contains pairs (cvFloor(x),
    .   cvFloor(y)) and \f$map_2\f$ contains indices in a table of interpolation coefficients.
    .   
    .   This function cannot operate in-place.
    .   
    .   @param src Source image.
    .   @param dst Destination image. It has the same size as map1 and the same type as src .
    .   @param map1 The first map of either (x,y) points or just x values having the type CV_16SC2 ,
    .   CV_32FC1, or CV_32FC2. See convertMaps for details on converting a floating point
    .   representation to fixed-point for speed.
    .   @param map2 The second map of y values having the type CV_16UC1, CV_32FC1, or none (empty map
    .   if map1 is (x,y) points), respectively.
    .   @param interpolation Interpolation method (see cv::InterpolationFlags). The method INTER_AREA is
    .   not supported by this function.
    .   @param borderMode Pixel extrapolation method (see cv::BorderTypes). When
    .   borderMode=BORDER_TRANSPARENT, it means that the pixels in the destination image that
    .   corresponds to the "outliers" in the source image are not modified by the function.
    .   @param borderValue Value used in case of a constant border. By default, it is 0.
    .   @note
    .   Due to current implementaion limitations the size of an input and output images should be less than 32767x32767.
    """
    pass

def repeat(src, ny, nx, dst=None): # real signature unknown; restored from __doc__
    """
    repeat(src, ny, nx[, dst]) -> dst
    .   @brief Fills the output array with repeated copies of the input array.
    .   
    .   The function cv::repeat duplicates the input array one or more times along each of the two axes:
    .   \f[\texttt{dst} _{ij}= \texttt{src} _{i\mod src.rows, \; j\mod src.cols }\f]
    .   The second variant of the function is more convenient to use with @ref MatrixExpressions.
    .   @param src input array to replicate.
    .   @param ny Flag to specify how many times the `src` is repeated along the
    .   vertical axis.
    .   @param nx Flag to specify how many times the `src` is repeated along the
    .   horizontal axis.
    .   @param dst output array of the same type as `src`.
    .   @sa cv::reduce
    """
    pass

def reprojectImageTo3D(disparity, Q, _3dImage=None, handleMissingValues=None, ddepth=None): # real signature unknown; restored from __doc__
    """
    reprojectImageTo3D(disparity, Q[, _3dImage[, handleMissingValues[, ddepth]]]) -> _3dImage
    .   @brief Reprojects a disparity image to 3D space.
    .   
    .   @param disparity Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit
    .   floating-point disparity image. If 16-bit signed format is used, the values are assumed to have no
    .   fractional bits.
    .   @param _3dImage Output 3-channel floating-point image of the same size as disparity . Each
    .   element of _3dImage(x,y) contains 3D coordinates of the point (x,y) computed from the disparity
    .   map.
    .   @param Q \f$4 \times 4\f$ perspective transformation matrix that can be obtained with stereoRectify.
    .   @param handleMissingValues Indicates, whether the function should handle missing values (i.e.
    .   points where the disparity was not computed). If handleMissingValues=true, then pixels with the
    .   minimal disparity that corresponds to the outliers (see StereoMatcher::compute ) are transformed
    .   to 3D points with a very large Z value (currently set to 10000).
    .   @param ddepth The optional output array depth. If it is -1, the output image will have CV_32F
    .   depth. ddepth can also be set to CV_16S, CV_32S or CV_32F.
    .   
    .   The function transforms a single-channel disparity map to a 3-channel image representing a 3D
    .   surface. That is, for each pixel (x,y) andthe corresponding disparity d=disparity(x,y) , it
    .   computes:
    .   
    .   \f[\begin{array}{l} [X \; Y \; Z \; W]^T =  \texttt{Q} *[x \; y \; \texttt{disparity} (x,y) \; 1]^T  \\ \texttt{\_3dImage} (x,y) = (X/W, \; Y/W, \; Z/W) \end{array}\f]
    .   
    .   The matrix Q can be an arbitrary \f$4 \times 4\f$ matrix (for example, the one computed by
    .   stereoRectify). To reproject a sparse set of points {(x,y,d),...} to 3D space, use
    .   perspectiveTransform .
    """
    pass

def resize(src, dsize, dst=None, fx=None, fy=None, interpolation=None): # real signature unknown; restored from __doc__
    """
    resize(src, dsize[, dst[, fx[, fy[, interpolation]]]]) -> dst
    .   @brief Resizes an image.
    .   
    .   The function resize resizes the image src down to or up to the specified size. Note that the
    .   initial dst type or size are not taken into account. Instead, the size and type are derived from
    .   the `src`,`dsize`,`fx`, and `fy`. If you want to resize src so that it fits the pre-created dst,
    .   you may call the function as follows:
    .   @code
    .   // explicitly specify dsize=dst.size(); fx and fy will be computed from that.
    .   resize(src, dst, dst.size(), 0, 0, interpolation);
    .   @endcode
    .   If you want to decimate the image by factor of 2 in each direction, you can call the function this
    .   way:
    .   @code
    .   // specify fx and fy and let the function compute the destination image size.
    .   resize(src, dst, Size(), 0.5, 0.5, interpolation);
    .   @endcode
    .   To shrink an image, it will generally look best with cv::INTER_AREA interpolation, whereas to
    .   enlarge an image, it will generally look best with cv::INTER_CUBIC (slow) or cv::INTER_LINEAR
    .   (faster but still looks OK).
    .   
    .   @param src input image.
    .   @param dst output image; it has the size dsize (when it is non-zero) or the size computed from
    .   src.size(), fx, and fy; the type of dst is the same as of src.
    .   @param dsize output image size; if it equals zero, it is computed as:
    .   \f[\texttt{dsize = Size(round(fx*src.cols), round(fy*src.rows))}\f]
    .   Either dsize or both fx and fy must be non-zero.
    .   @param fx scale factor along the horizontal axis; when it equals 0, it is computed as
    .   \f[\texttt{(double)dsize.width/src.cols}\f]
    .   @param fy scale factor along the vertical axis; when it equals 0, it is computed as
    .   \f[\texttt{(double)dsize.height/src.rows}\f]
    .   @param interpolation interpolation method, see cv::InterpolationFlags
    .   
    .   @sa  warpAffine, warpPerspective, remap
    """
    pass

def resizeWindow(winname, width, height): # real signature unknown; restored from __doc__
    """
    resizeWindow(winname, width, height) -> None
    .   @brief Resizes window to the specified size
    .   
    .   @note
    .   
    .   -   The specified window size is for the image area. Toolbars are not counted.
    .   -   Only windows created without cv::WINDOW_AUTOSIZE flag can be resized.
    .   
    .   @param winname Window name.
    .   @param width The new window width.
    .   @param height The new window height.
    """
    pass

def Rodrigues(src, dst=None, jacobian=None): # real signature unknown; restored from __doc__
    """
    Rodrigues(src[, dst[, jacobian]]) -> dst, jacobian
    .   @brief Converts a rotation matrix to a rotation vector or vice versa.
    .   
    .   @param src Input rotation vector (3x1 or 1x3) or rotation matrix (3x3).
    .   @param dst Output rotation matrix (3x3) or rotation vector (3x1 or 1x3), respectively.
    .   @param jacobian Optional output Jacobian matrix, 3x9 or 9x3, which is a matrix of partial
    .   derivatives of the output array components with respect to the input array components.
    .   
    .   \f[\begin{array}{l} \theta \leftarrow norm(r) \\ r  \leftarrow r/ \theta \\ R =  \cos{\theta} I + (1- \cos{\theta} ) r r^T +  \sin{\theta} \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} \end{array}\f]
    .   
    .   Inverse transformation can be also done easily, since
    .   
    .   \f[\sin ( \theta ) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} = \frac{R - R^T}{2}\f]
    .   
    .   A rotation vector is a convenient and most compact representation of a rotation matrix (since any
    .   rotation matrix has just 3 degrees of freedom). The representation is used in the global 3D geometry
    .   optimization procedures like calibrateCamera, stereoCalibrate, or solvePnP .
    """
    pass

def rotate(src, rotateCode, dst=None): # real signature unknown; restored from __doc__
    """
    rotate(src, rotateCode[, dst]) -> dst
    .   @brief Rotates a 2D array in multiples of 90 degrees.
    .   The function rotate rotates the array in one of three different ways:
    .   *   Rotate by 90 degrees clockwise (rotateCode = ROTATE_90).
    .   *   Rotate by 180 degrees clockwise (rotateCode = ROTATE_180).
    .   *   Rotate by 270 degrees clockwise (rotateCode = ROTATE_270).
    .   @param src input array.
    .   @param dst output array of the same type as src.  The size is the same with ROTATE_180,
    .   and the rows and cols are switched for ROTATE_90 and ROTATE_270.
    .   @param rotateCode an enum to specify how to rotate the array; see the enum RotateFlags
    .   @sa transpose , repeat , completeSymm, flip, RotateFlags
    """
    pass

def rotatedRectangleIntersection(rect1, rect2, intersectingRegion=None): # real signature unknown; restored from __doc__
    """
    rotatedRectangleIntersection(rect1, rect2[, intersectingRegion]) -> retval, intersectingRegion
    .   @brief Finds out if there is any intersection between two rotated rectangles.
    .   
    .   If there is then the vertices of the intersecting region are returned as well.
    .   
    .   Below are some examples of intersection configurations. The hatched pattern indicates the
    .   intersecting region and the red vertices are returned by the function.
    .   
    .   ![intersection examples](pics/intersection.png)
    .   
    .   @param rect1 First rectangle
    .   @param rect2 Second rectangle
    .   @param intersectingRegion The output array of the verticies of the intersecting region. It returns
    .   at most 8 vertices. Stored as std::vector\<cv::Point2f\> or cv::Mat as Mx1 of type CV_32FC2.
    .   @returns One of cv::RectanglesIntersectTypes
    """
    pass

def RQDecomp3x3(src, mtxR=None, mtxQ=None, Qx=None, Qy=None, Qz=None): # real signature unknown; restored from __doc__
    """
    RQDecomp3x3(src[, mtxR[, mtxQ[, Qx[, Qy[, Qz]]]]]) -> retval, mtxR, mtxQ, Qx, Qy, Qz
    .   @brief Computes an RQ decomposition of 3x3 matrices.
    .   
    .   @param src 3x3 input matrix.
    .   @param mtxR Output 3x3 upper-triangular matrix.
    .   @param mtxQ Output 3x3 orthogonal matrix.
    .   @param Qx Optional output 3x3 rotation matrix around x-axis.
    .   @param Qy Optional output 3x3 rotation matrix around y-axis.
    .   @param Qz Optional output 3x3 rotation matrix around z-axis.
    .   
    .   The function computes a RQ decomposition using the given rotations. This function is used in
    .   decomposeProjectionMatrix to decompose the left 3x3 submatrix of a projection matrix into a camera
    .   and a rotation matrix.
    .   
    .   It optionally returns three rotation matrices, one for each axis, and the three Euler angles in
    .   degrees (as the return value) that could be used in OpenGL. Note, there is always more than one
    .   sequence of rotations about the three principal axes that results in the same orientation of an
    .   object, eg. see @cite Slabaugh . Returned tree rotation matrices and corresponding three Euler angules
    .   are only one of the possible solutions.
    """
    pass

def sampsonDistance(pt1, pt2, F): # real signature unknown; restored from __doc__
    """
    sampsonDistance(pt1, pt2, F) -> retval
    .   @brief Calculates the Sampson Distance between two points.
    .   
    .   The function sampsonDistance calculates and returns the first order approximation of the geometric error as:
    .   \f[sd( \texttt{pt1} , \texttt{pt2} )= \frac{(\texttt{pt2}^t \cdot \texttt{F} \cdot \texttt{pt1})^2}{(\texttt{F} \cdot \texttt{pt1})(0) + (\texttt{F} \cdot \texttt{pt1})(1) + (\texttt{F}^t \cdot \texttt{pt2})(0) + (\texttt{F}^t \cdot \texttt{pt2})(1)}\f]
    .   The fundamental matrix may be calculated using the cv::findFundamentalMat function. See HZ 11.4.3 for details.
    .   @param pt1 first homogeneous 2d point
    .   @param pt2 second homogeneous 2d point
    .   @param F fundamental matrix
    """
    pass

def scaleAdd(src1, alpha, src2, dst=None): # real signature unknown; restored from __doc__
    """
    scaleAdd(src1, alpha, src2[, dst]) -> dst
    .   @brief Calculates the sum of a scaled array and another array.
    .   
    .   The function scaleAdd is one of the classical primitive linear algebra operations, known as DAXPY
    .   or SAXPY in [BLAS](http://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms). It calculates
    .   the sum of a scaled array and another array:
    .   \f[\texttt{dst} (I)= \texttt{scale} \cdot \texttt{src1} (I) +  \texttt{src2} (I)\f]
    .   The function can also be emulated with a matrix expression, for example:
    .   @code{.cpp}
    .   Mat A(3, 3, CV_64F);
    .   ...
    .   A.row(0) = A.row(1)*2 + A.row(2);
    .   @endcode
    .   @param src1 first input array.
    .   @param alpha scale factor for the first array.
    .   @param src2 second input array of the same size and type as src1.
    .   @param dst output array of the same size and type as src1.
    .   @sa add, addWeighted, subtract, Mat::dot, Mat::convertTo
    """
    pass

def Scharr(src, ddepth, dx, dy, dst=None, scale=None, delta=None, borderType=None): # real signature unknown; restored from __doc__
    """
    Scharr(src, ddepth, dx, dy[, dst[, scale[, delta[, borderType]]]]) -> dst
    .   @brief Calculates the first x- or y- image derivative using Scharr operator.
    .   
    .   The function computes the first x- or y- spatial image derivative using the Scharr operator. The
    .   call
    .   
    .   \f[\texttt{Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)}\f]
    .   
    .   is equivalent to
    .   
    .   \f[\texttt{Sobel(src, dst, ddepth, dx, dy, CV\_SCHARR, scale, delta, borderType)} .\f]
    .   
    .   @param src input image.
    .   @param dst output image of the same size and the same number of channels as src.
    .   @param ddepth output image depth, see @ref filter_depths "combinations"
    .   @param dx order of the derivative x.
    .   @param dy order of the derivative y.
    .   @param scale optional scale factor for the computed derivative values; by default, no scaling is
    .   applied (see getDerivKernels for details).
    .   @param delta optional delta value that is added to the results prior to storing them in dst.
    .   @param borderType pixel extrapolation method, see cv::BorderTypes
    .   @sa  cartToPolar
    """
    pass

def seamlessClone(src, dst, mask, p, flags, blend=None): # real signature unknown; restored from __doc__
    """
    seamlessClone(src, dst, mask, p, flags[, blend]) -> blend
    .   @brief Image editing tasks concern either global changes (color/intensity corrections, filters,
    .   deformations) or local changes concerned to a selection. Here we are interested in achieving local
    .   changes, ones that are restricted to a region manually selected (ROI), in a seamless and effortless
    .   manner. The extent of the changes ranges from slight distortions to complete replacement by novel
    .   content @cite PM03 .
    .   
    .   @param src Input 8-bit 3-channel image.
    .   @param dst Input 8-bit 3-channel image.
    .   @param mask Input 8-bit 1 or 3-channel image.
    .   @param p Point in dst image where object is placed.
    .   @param blend Output image with the same size and type as dst.
    .   @param flags Cloning method that could be one of the following:
    .   -   **NORMAL_CLONE** The power of the method is fully expressed when inserting objects with
    .   complex outlines into a new background
    .   -   **MIXED_CLONE** The classic method, color-based selection and alpha masking might be time
    .   consuming and often leaves an undesirable halo. Seamless cloning, even averaged with the
    .   original image, is not effective. Mixed seamless cloning based on a loose selection proves
    .   effective.
    .   -   **MONOCHROME_TRANSFER** Monochrome transfer allows the user to easily replace certain features of
    .   one object by alternative features.
    """
    pass

def selectROI(windowName, img, showCrosshair=None, fromCenter=None): # real signature unknown; restored from __doc__
    """
    selectROI(windowName, img[, showCrosshair[, fromCenter]]) -> retval
    .   @brief Selects ROI on the given image.
    .   Function creates a window and allows user to select a ROI using mouse.
    .   Controls: use `space` or `enter` to finish selection, use key `c` to cancel selection (function will return the zero cv::Rect).
    .   
    .   @param windowName name of the window where selection process will be shown.
    .   @param img image to select a ROI.
    .   @param showCrosshair if true crosshair of selection rectangle will be shown.
    .   @param fromCenter if true center of selection will match initial mouse position. In opposite case a corner of
    .   selection rectangle will correspont to the initial mouse position.
    .   @return selected ROI or empty rect if selection canceled.
    .   
    .   @note The function sets it's own mouse callback for specified window using cv::setMouseCallback(windowName, ...).
    .   After finish of work an empty callback will be set for the used window.
    
    
    
    selectROI(img[, showCrosshair[, fromCenter]]) -> retval
    .   @overload
    """
    pass

def selectROIs(windowName, img, showCrosshair=None, fromCenter=None): # real signature unknown; restored from __doc__
    """
    selectROIs(windowName, img[, showCrosshair[, fromCenter]]) -> boundingBoxes
    .   @brief Selects ROIs on the given image.
    .   Function creates a window and allows user to select a ROIs using mouse.
    .   Controls: use `space` or `enter` to finish current selection and start a new one,
    .   use `esc` to terminate multiple ROI selection process.
    .   
    .   @param windowName name of the window where selection process will be shown.
    .   @param img image to select a ROI.
    .   @param boundingBoxes selected ROIs.
    .   @param showCrosshair if true crosshair of selection rectangle will be shown.
    .   @param fromCenter if true center of selection will match initial mouse position. In opposite case a corner of
    .   selection rectangle will correspont to the initial mouse position.
    .   
    .   @note The function sets it's own mouse callback for specified window using cv::setMouseCallback(windowName, ...).
    .   After finish of work an empty callback will be set for the used window.
    """
    pass

def sepFilter2D(src, ddepth, kernelX, kernelY, dst=None, anchor=None, delta=None, borderType=None): # real signature unknown; restored from __doc__
    """
    sepFilter2D(src, ddepth, kernelX, kernelY[, dst[, anchor[, delta[, borderType]]]]) -> dst
    .   @brief Applies a separable linear filter to an image.
    .   
    .   The function applies a separable linear filter to the image. That is, first, every row of src is
    .   filtered with the 1D kernel kernelX. Then, every column of the result is filtered with the 1D
    .   kernel kernelY. The final result shifted by delta is stored in dst .
    .   
    .   @param src Source image.
    .   @param dst Destination image of the same size and the same number of channels as src .
    .   @param ddepth Destination image depth, see @ref filter_depths "combinations"
    .   @param kernelX Coefficients for filtering each row.
    .   @param kernelY Coefficients for filtering each column.
    .   @param anchor Anchor position within the kernel. The default value \f$(-1,-1)\f$ means that the anchor
    .   is at the kernel center.
    .   @param delta Value added to the filtered results before storing them.
    .   @param borderType Pixel extrapolation method, see cv::BorderTypes
    .   @sa  filter2D, Sobel, GaussianBlur, boxFilter, blur
    """
    pass

def setIdentity(mtx, s=None): # real signature unknown; restored from __doc__
    """
    setIdentity(mtx[, s]) -> mtx
    .   @brief Initializes a scaled identity matrix.
    .   
    .   The function cv::setIdentity initializes a scaled identity matrix:
    .   \f[\texttt{mtx} (i,j)= \fork{\texttt{value}}{ if \(i=j\)}{0}{otherwise}\f]
    .   
    .   The function can also be emulated using the matrix initializers and the
    .   matrix expressions:
    .   @code
    .   Mat A = Mat::eye(4, 3, CV_32F)*5;
    .   // A will be set to [[5, 0, 0], [0, 5, 0], [0, 0, 5], [0, 0, 0]]
    .   @endcode
    .   @param mtx matrix to initialize (not necessarily square).
    .   @param s value to assign to diagonal elements.
    .   @sa Mat::zeros, Mat::ones, Mat::setTo, Mat::operator=
    """
    pass

def setMouseCallback(windowName, onMouse, param=None): # real signature unknown; restored from __doc__
    """ setMouseCallback(windowName, onMouse [, param]) -> None """
    pass

def setNumThreads(nthreads): # real signature unknown; restored from __doc__
    """
    setNumThreads(nthreads) -> None
    .   @brief OpenCV will try to set the number of threads for the next parallel region.
    .   
    .   If threads == 0, OpenCV will disable threading optimizations and run all it's functions
    .   sequentially. Passing threads \< 0 will reset threads number to system default. This function must
    .   be called outside of parallel region.
    .   
    .   OpenCV will try to run it's functions with specified threads number, but some behaviour differs from
    .   framework:
    .   -   `TBB` - User-defined parallel constructions will run with the same threads number, if
    .   another does not specified. If later on user creates own scheduler, OpenCV will use it.
    .   -   `OpenMP` - No special defined behaviour.
    .   -   `Concurrency` - If threads == 1, OpenCV will disable threading optimizations and run it's
    .   functions sequentially.
    .   -   `GCD` - Supports only values \<= 0.
    .   -   `C=` - No special defined behaviour.
    .   @param nthreads Number of threads used by OpenCV.
    .   @sa getNumThreads, getThreadNum
    """
    pass

def setRNGSeed(seed): # real signature unknown; restored from __doc__
    """
    setRNGSeed(seed) -> None
    .   @brief Sets state of default random number generator.
    .   
    .   The function cv::setRNGSeed sets state of default random number generator to custom value.
    .   @param seed new state for default random number generator
    .   @sa RNG, randu, randn
    """
    pass

def setTrackbarMax(trackbarname, winname, maxval): # real signature unknown; restored from __doc__
    """
    setTrackbarMax(trackbarname, winname, maxval) -> None
    .   @brief Sets the trackbar maximum position.
    .   
    .   The function sets the maximum position of the specified trackbar in the specified window.
    .   
    .   @note
    .   
    .   [__Qt Backend Only__] winname can be empty (or NULL) if the trackbar is attached to the control
    .   panel.
    .   
    .   @param trackbarname Name of the trackbar.
    .   @param winname Name of the window that is the parent of trackbar.
    .   @param maxval New maximum position.
    """
    pass

def setTrackbarMin(trackbarname, winname, minval): # real signature unknown; restored from __doc__
    """
    setTrackbarMin(trackbarname, winname, minval) -> None
    .   @brief Sets the trackbar minimum position.
    .   
    .   The function sets the minimum position of the specified trackbar in the specified window.
    .   
    .   @note
    .   
    .   [__Qt Backend Only__] winname can be empty (or NULL) if the trackbar is attached to the control
    .   panel.
    .   
    .   @param trackbarname Name of the trackbar.
    .   @param winname Name of the window that is the parent of trackbar.
    .   @param minval New maximum position.
    """
    pass

def setTrackbarPos(trackbarname, winname, pos): # real signature unknown; restored from __doc__
    """
    setTrackbarPos(trackbarname, winname, pos) -> None
    .   @brief Sets the trackbar position.
    .   
    .   The function sets the position of the specified trackbar in the specified window.
    .   
    .   @note
    .   
    .   [__Qt Backend Only__] winname can be empty (or NULL) if the trackbar is attached to the control
    .   panel.
    .   
    .   @param trackbarname Name of the trackbar.
    .   @param winname Name of the window that is the parent of trackbar.
    .   @param pos New position.
    """
    pass

def setUseOpenVX(flag): # real signature unknown; restored from __doc__
    """
    setUseOpenVX(flag) -> None
    .
    """
    pass

def setUseOptimized(onoff): # real signature unknown; restored from __doc__
    """
    setUseOptimized(onoff) -> None
    .   @brief Enables or disables the optimized code.
    .   
    .   The function can be used to dynamically turn on and off optimized code (code that uses SSE2, AVX,
    .   and other instructions on the platforms that support it). It sets a global flag that is further
    .   checked by OpenCV functions. Since the flag is not checked in the inner OpenCV loops, it is only
    .   safe to call the function on the very top level in your application where you can be sure that no
    .   other OpenCV function is currently executed.
    .   
    .   By default, the optimized code is enabled unless you disable it in CMake. The current status can be
    .   retrieved using useOptimized.
    .   @param onoff The boolean flag specifying whether the optimized code should be used (onoff=true)
    .   or not (onoff=false).
    """
    pass

def setWindowProperty(winname, prop_id, prop_value): # real signature unknown; restored from __doc__
    """
    setWindowProperty(winname, prop_id, prop_value) -> None
    .   @brief Changes parameters of a window dynamically.
    .   
    .   The function setWindowProperty enables changing properties of a window.
    .   
    .   @param winname Name of the window.
    .   @param prop_id Window property to edit. The supported operation flags are: (cv::WindowPropertyFlags)
    .   @param prop_value New value of the window property. The supported flags are: (cv::WindowFlags)
    """
    pass

def setWindowTitle(winname, title): # real signature unknown; restored from __doc__
    """
    setWindowTitle(winname, title) -> None
    .   @brief Updates window title
    .   @param winname Name of the window.
    .   @param title New title.
    """
    pass

def SimpleBlobDetector_create(parameters=None): # real signature unknown; restored from __doc__
    """
    SimpleBlobDetector_create([, parameters]) -> retval
    .
    """
    pass

def SimpleBlobDetector_Params(): # real signature unknown; restored from __doc__
    """
    SimpleBlobDetector_Params() -> <SimpleBlobDetector_Params object>
    .
    """
    pass

def Sobel(src, ddepth, dx, dy, dst=None, ksize=None, scale=None, delta=None, borderType=None): # real signature unknown; restored from __doc__
    """
    Sobel(src, ddepth, dx, dy[, dst[, ksize[, scale[, delta[, borderType]]]]]) -> dst
    .   @brief Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator.
    .   
    .   In all cases except one, the \f$\texttt{ksize} \times \texttt{ksize}\f$ separable kernel is used to
    .   calculate the derivative. When \f$\texttt{ksize = 1}\f$, the \f$3 \times 1\f$ or \f$1 \times 3\f$
    .   kernel is used (that is, no Gaussian smoothing is done). `ksize = 1` can only be used for the first
    .   or the second x- or y- derivatives.
    .   
    .   There is also the special value `ksize = CV_SCHARR (-1)` that corresponds to the \f$3\times3\f$ Scharr
    .   filter that may give more accurate results than the \f$3\times3\f$ Sobel. The Scharr aperture is
    .   
    .   \f[\vecthreethree{-3}{0}{3}{-10}{0}{10}{-3}{0}{3}\f]
    .   
    .   for the x-derivative, or transposed for the y-derivative.
    .   
    .   The function calculates an image derivative by convolving the image with the appropriate kernel:
    .   
    .   \f[\texttt{dst} =  \frac{\partial^{xorder+yorder} \texttt{src}}{\partial x^{xorder} \partial y^{yorder}}\f]
    .   
    .   The Sobel operators combine Gaussian smoothing and differentiation, so the result is more or less
    .   resistant to the noise. Most often, the function is called with ( xorder = 1, yorder = 0, ksize = 3)
    .   or ( xorder = 0, yorder = 1, ksize = 3) to calculate the first x- or y- image derivative. The first
    .   case corresponds to a kernel of:
    .   
    .   \f[\vecthreethree{-1}{0}{1}{-2}{0}{2}{-1}{0}{1}\f]
    .   
    .   The second case corresponds to a kernel of:
    .   
    .   \f[\vecthreethree{-1}{-2}{-1}{0}{0}{0}{1}{2}{1}\f]
    .   
    .   @param src input image.
    .   @param dst output image of the same size and the same number of channels as src .
    .   @param ddepth output image depth, see @ref filter_depths "combinations"; in the case of
    .   8-bit input images it will result in truncated derivatives.
    .   @param dx order of the derivative x.
    .   @param dy order of the derivative y.
    .   @param ksize size of the extended Sobel kernel; it must be 1, 3, 5, or 7.
    .   @param scale optional scale factor for the computed derivative values; by default, no scaling is
    .   applied (see cv::getDerivKernels for details).
    .   @param delta optional delta value that is added to the results prior to storing them in dst.
    .   @param borderType pixel extrapolation method, see cv::BorderTypes
    .   @sa  Scharr, Laplacian, sepFilter2D, filter2D, GaussianBlur, cartToPolar
    """
    pass

def solve(src1, src2, dst=None, flags=None): # real signature unknown; restored from __doc__
    """
    solve(src1, src2[, dst[, flags]]) -> retval, dst
    .   @brief Solves one or more linear systems or least-squares problems.
    .   
    .   The function cv::solve solves a linear system or least-squares problem (the
    .   latter is possible with SVD or QR methods, or by specifying the flag
    .   DECOMP_NORMAL ):
    .   \f[\texttt{dst} =  \arg \min _X \| \texttt{src1} \cdot \texttt{X} -  \texttt{src2} \|\f]
    .   
    .   If DECOMP_LU or DECOMP_CHOLESKY method is used, the function returns 1
    .   if src1 (or \f$\texttt{src1}^T\texttt{src1}\f$ ) is non-singular. Otherwise,
    .   it returns 0. In the latter case, dst is not valid. Other methods find a
    .   pseudo-solution in case of a singular left-hand side part.
    .   
    .   @note If you want to find a unity-norm solution of an under-defined
    .   singular system \f$\texttt{src1}\cdot\texttt{dst}=0\f$ , the function solve
    .   will not do the work. Use SVD::solveZ instead.
    .   
    .   @param src1 input matrix on the left-hand side of the system.
    .   @param src2 input matrix on the right-hand side of the system.
    .   @param dst output solution.
    .   @param flags solution (matrix inversion) method (cv::DecompTypes)
    .   @sa invert, SVD, eigen
    """
    pass

def solveCubic(coeffs, roots=None): # real signature unknown; restored from __doc__
    """
    solveCubic(coeffs[, roots]) -> retval, roots
    .   @brief Finds the real roots of a cubic equation.
    .   
    .   The function solveCubic finds the real roots of a cubic equation:
    .   -   if coeffs is a 4-element vector:
    .   \f[\texttt{coeffs} [0] x^3 +  \texttt{coeffs} [1] x^2 +  \texttt{coeffs} [2] x +  \texttt{coeffs} [3] = 0\f]
    .   -   if coeffs is a 3-element vector:
    .   \f[x^3 +  \texttt{coeffs} [0] x^2 +  \texttt{coeffs} [1] x +  \texttt{coeffs} [2] = 0\f]
    .   
    .   The roots are stored in the roots array.
    .   @param coeffs equation coefficients, an array of 3 or 4 elements.
    .   @param roots output array of real roots that has 1 or 3 elements.
    """
    pass

def solveLP(Func, Constr, z): # real signature unknown; restored from __doc__
    """
    solveLP(Func, Constr, z) -> retval
    .   @brief Solve given (non-integer) linear programming problem using the Simplex Algorithm (Simplex Method).
    .   
    .   What we mean here by "linear programming problem" (or LP problem, for short) can be formulated as:
    .   
    .   \f[\mbox{Maximize } c\cdot x\\
    .   \mbox{Subject to:}\\
    .   Ax\leq b\\
    .   x\geq 0\f]
    .   
    .   Where \f$c\f$ is fixed `1`-by-`n` row-vector, \f$A\f$ is fixed `m`-by-`n` matrix, \f$b\f$ is fixed `m`-by-`1`
    .   column vector and \f$x\f$ is an arbitrary `n`-by-`1` column vector, which satisfies the constraints.
    .   
    .   Simplex algorithm is one of many algorithms that are designed to handle this sort of problems
    .   efficiently. Although it is not optimal in theoretical sense (there exist algorithms that can solve
    .   any problem written as above in polynomial time, while simplex method degenerates to exponential
    .   time for some special cases), it is well-studied, easy to implement and is shown to work well for
    .   real-life purposes.
    .   
    .   The particular implementation is taken almost verbatim from **Introduction to Algorithms, third
    .   edition** by T. H. Cormen, C. E. Leiserson, R. L. Rivest and Clifford Stein. In particular, the
    .   Bland's rule <http://en.wikipedia.org/wiki/Bland%27s_rule> is used to prevent cycling.
    .   
    .   @param Func This row-vector corresponds to \f$c\f$ in the LP problem formulation (see above). It should
    .   contain 32- or 64-bit floating point numbers. As a convenience, column-vector may be also submitted,
    .   in the latter case it is understood to correspond to \f$c^T\f$.
    .   @param Constr `m`-by-`n+1` matrix, whose rightmost column corresponds to \f$b\f$ in formulation above
    .   and the remaining to \f$A\f$. It should containt 32- or 64-bit floating point numbers.
    .   @param z The solution will be returned here as a column-vector - it corresponds to \f$c\f$ in the
    .   formulation above. It will contain 64-bit floating point numbers.
    .   @return One of cv::SolveLPResult
    """
    pass

def solveP3P(objectPoints, imagePoints, cameraMatrix, distCoeffs, flags, rvecs=None, tvecs=None): # real signature unknown; restored from __doc__
    """
    solveP3P(objectPoints, imagePoints, cameraMatrix, distCoeffs, flags[, rvecs[, tvecs]]) -> retval, rvecs, tvecs
    .   @brief Finds an object pose from 3 3D-2D point correspondences.
    .   
    .   @param objectPoints Array of object points in the object coordinate space, 3x3 1-channel or
    .   1x3/3x1 3-channel. vector\<Point3f\> can be also passed here.
    .   @param imagePoints Array of corresponding image points, 3x2 1-channel or 1x3/3x1 2-channel.
    .   vector\<Point2f\> can be also passed here.
    .   @param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ .
    .   @param distCoeffs Input vector of distortion coefficients
    .   \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
    .   4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are
    .   assumed.
    .   @param rvecs Output rotation vectors (see Rodrigues ) that, together with tvecs , brings points from
    .   the model coordinate system to the camera coordinate system. A P3P problem has up to 4 solutions.
    .   @param tvecs Output translation vectors.
    .   @param flags Method for solving a P3P problem:
    .   -   **SOLVEPNP_P3P** Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang
    .   "Complete Solution Classification for the Perspective-Three-Point Problem".
    .   -   **SOLVEPNP_AP3P** Method is based on the paper of Tong Ke and Stergios I. Roumeliotis.
    .   "An Efficient Algebraic Solution to the Perspective-Three-Point Problem".
    .   
    .   The function estimates the object pose given 3 object points, their corresponding image
    .   projections, as well as the camera matrix and the distortion coefficients.
    """
    pass

def solvePnP(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec=None, tvec=None, useExtrinsicGuess=None, flags=None): # real signature unknown; restored from __doc__
    """
    solvePnP(objectPoints, imagePoints, cameraMatrix, distCoeffs[, rvec[, tvec[, useExtrinsicGuess[, flags]]]]) -> retval, rvec, tvec
    .   @brief Finds an object pose from 3D-2D point correspondences.
    .   
    .   @param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
    .   1xN/Nx1 3-channel, where N is the number of points. vector\<Point3f\> can be also passed here.
    .   @param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
    .   where N is the number of points. vector\<Point2f\> can be also passed here.
    .   @param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ .
    .   @param distCoeffs Input vector of distortion coefficients
    .   \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
    .   4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are
    .   assumed.
    .   @param rvec Output rotation vector (see @ref Rodrigues ) that, together with tvec , brings points from
    .   the model coordinate system to the camera coordinate system.
    .   @param tvec Output translation vector.
    .   @param useExtrinsicGuess Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
    .   the provided rvec and tvec values as initial approximations of the rotation and translation
    .   vectors, respectively, and further optimizes them.
    .   @param flags Method for solving a PnP problem:
    .   -   **SOLVEPNP_ITERATIVE** Iterative method is based on Levenberg-Marquardt optimization. In
    .   this case the function finds such a pose that minimizes reprojection error, that is the sum
    .   of squared distances between the observed projections imagePoints and the projected (using
    .   projectPoints ) objectPoints .
    .   -   **SOLVEPNP_P3P** Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang
    .   "Complete Solution Classification for the Perspective-Three-Point Problem" (@cite gao2003complete).
    .   In this case the function requires exactly four object and image points.
    .   -   **SOLVEPNP_AP3P** Method is based on the paper of T. Ke, S. Roumeliotis
    .   "An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17).
    .   In this case the function requires exactly four object and image points.
    .   -   **SOLVEPNP_EPNP** Method has been introduced by F.Moreno-Noguer, V.Lepetit and P.Fua in the
    .   paper "EPnP: Efficient Perspective-n-Point Camera Pose Estimation" (@cite lepetit2009epnp).
    .   -   **SOLVEPNP_DLS** Method is based on the paper of Joel A. Hesch and Stergios I. Roumeliotis.
    .   "A Direct Least-Squares (DLS) Method for PnP" (@cite hesch2011direct).
    .   -   **SOLVEPNP_UPNP** Method is based on the paper of A.Penate-Sanchez, J.Andrade-Cetto,
    .   F.Moreno-Noguer. "Exhaustive Linearization for Robust Camera Pose and Focal Length
    .   Estimation" (@cite penate2013exhaustive). In this case the function also estimates the parameters \f$f_x\f$ and \f$f_y\f$
    .   assuming that both have the same value. Then the cameraMatrix is updated with the estimated
    .   focal length.
    .   -   **SOLVEPNP_AP3P** Method is based on the paper of Tong Ke and Stergios I. Roumeliotis.
    .   "An Efficient Algebraic Solution to the Perspective-Three-Point Problem". In this case the
    .   function requires exactly four object and image points.
    .   
    .   The function estimates the object pose given a set of object points, their corresponding image
    .   projections, as well as the camera matrix and the distortion coefficients.
    .   
    .   @note
    .   -   An example of how to use solvePnP for planar augmented reality can be found at
    .   opencv_source_code/samples/python/plane_ar.py
    .   -   If you are using Python:
    .   - Numpy array slices won't work as input because solvePnP requires contiguous
    .   arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
    .   modules/calib3d/src/solvepnp.cpp version 2.4.9)
    .   - The P3P algorithm requires image points to be in an array of shape (N,1,2) due
    .   to its calling of cv::undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
    .   which requires 2-channel information.
    .   - Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
    .   it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
    .   np.ascontiguousarray(D[:,:2]).reshape((N,1,2))
    .   -   The methods **SOLVEPNP_DLS** and **SOLVEPNP_UPNP** cannot be used as the current implementations are
    .   unstable and sometimes give completly wrong results. If you pass one of these two
    .   flags, **SOLVEPNP_EPNP** method will be used instead.
    .   -   The minimum number of points is 4. In the case of **SOLVEPNP_P3P** and **SOLVEPNP_AP3P**
    .   methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
    .   of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).
    """
    pass

def solvePnPRansac(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec=None, tvec=None, useExtrinsicGuess=None, iterationsCount=None, reprojectionError=None, confidence=None, inliers=None, flags=None): # real signature unknown; restored from __doc__
    """
    solvePnPRansac(objectPoints, imagePoints, cameraMatrix, distCoeffs[, rvec[, tvec[, useExtrinsicGuess[, iterationsCount[, reprojectionError[, confidence[, inliers[, flags]]]]]]]]) -> retval, rvec, tvec, inliers
    .   @brief Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.
    .   
    .   @param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
    .   1xN/Nx1 3-channel, where N is the number of points. vector\<Point3f\> can be also passed here.
    .   @param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
    .   where N is the number of points. vector\<Point2f\> can be also passed here.
    .   @param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ .
    .   @param distCoeffs Input vector of distortion coefficients
    .   \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
    .   4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are
    .   assumed.
    .   @param rvec Output rotation vector (see Rodrigues ) that, together with tvec , brings points from
    .   the model coordinate system to the camera coordinate system.
    .   @param tvec Output translation vector.
    .   @param useExtrinsicGuess Parameter used for SOLVEPNP_ITERATIVE. If true (1), the function uses
    .   the provided rvec and tvec values as initial approximations of the rotation and translation
    .   vectors, respectively, and further optimizes them.
    .   @param iterationsCount Number of iterations.
    .   @param reprojectionError Inlier threshold value used by the RANSAC procedure. The parameter value
    .   is the maximum allowed distance between the observed and computed point projections to consider it
    .   an inlier.
    .   @param confidence The probability that the algorithm produces a useful result.
    .   @param inliers Output vector that contains indices of inliers in objectPoints and imagePoints .
    .   @param flags Method for solving a PnP problem (see solvePnP ).
    .   
    .   The function estimates an object pose given a set of object points, their corresponding image
    .   projections, as well as the camera matrix and the distortion coefficients. This function finds such
    .   a pose that minimizes reprojection error, that is, the sum of squared distances between the observed
    .   projections imagePoints and the projected (using projectPoints ) objectPoints. The use of RANSAC
    .   makes the function resistant to outliers.
    .   
    .   @note
    .   -   An example of how to use solvePNPRansac for object detection can be found at
    .   opencv_source_code/samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/
    .   -   The default method used to estimate the camera pose for the Minimal Sample Sets step
    .   is #SOLVEPNP_EPNP. Exceptions are:
    .   - if you choose #SOLVEPNP_P3P or #SOLVEPNP_AP3P, these methods will be used.
    .   - if the number of input points is equal to 4, #SOLVEPNP_P3P is used.
    .   -   The method used to estimate the camera pose using all the inliers is defined by the
    .   flags parameters unless it is equal to #SOLVEPNP_P3P or #SOLVEPNP_AP3P. In this case,
    .   the method #SOLVEPNP_EPNP will be used instead.
    """
    pass

def solvePoly(coeffs, roots=None, maxIters=None): # real signature unknown; restored from __doc__
    """
    solvePoly(coeffs[, roots[, maxIters]]) -> retval, roots
    .   @brief Finds the real or complex roots of a polynomial equation.
    .   
    .   The function cv::solvePoly finds real and complex roots of a polynomial equation:
    .   \f[\texttt{coeffs} [n] x^{n} +  \texttt{coeffs} [n-1] x^{n-1} + ... +  \texttt{coeffs} [1] x +  \texttt{coeffs} [0] = 0\f]
    .   @param coeffs array of polynomial coefficients.
    .   @param roots output (complex) array of roots.
    .   @param maxIters maximum number of iterations the algorithm does.
    """
    pass

def sort(src, flags, dst=None): # real signature unknown; restored from __doc__
    """
    sort(src, flags[, dst]) -> dst
    .   @brief Sorts each row or each column of a matrix.
    .   
    .   The function cv::sort sorts each matrix row or each matrix column in
    .   ascending or descending order. So you should pass two operation flags to
    .   get desired behaviour. If you want to sort matrix rows or columns
    .   lexicographically, you can use STL std::sort generic function with the
    .   proper comparison predicate.
    .   
    .   @param src input single-channel array.
    .   @param dst output array of the same size and type as src.
    .   @param flags operation flags, a combination of cv::SortFlags
    .   @sa sortIdx, randShuffle
    """
    pass

def sortIdx(src, flags, dst=None): # real signature unknown; restored from __doc__
    """
    sortIdx(src, flags[, dst]) -> dst
    .   @brief Sorts each row or each column of a matrix.
    .   
    .   The function cv::sortIdx sorts each matrix row or each matrix column in the
    .   ascending or descending order. So you should pass two operation flags to
    .   get desired behaviour. Instead of reordering the elements themselves, it
    .   stores the indices of sorted elements in the output array. For example:
    .   @code
    .   Mat A = Mat::eye(3,3,CV_32F), B;
    .   sortIdx(A, B, SORT_EVERY_ROW + SORT_ASCENDING);
    .   // B will probably contain
    .   // (because of equal elements in A some permutations are possible):
    .   // [[1, 2, 0], [0, 2, 1], [0, 1, 2]]
    .   @endcode
    .   @param src input single-channel array.
    .   @param dst output integer array of the same size as src.
    .   @param flags operation flags that could be a combination of cv::SortFlags
    .   @sa sort, randShuffle
    """
    pass

def SparsePyrLKOpticalFlow_create(winSize=None, maxLevel=None, crit=None, flags=None, minEigThreshold=None): # real signature unknown; restored from __doc__
    """
    SparsePyrLKOpticalFlow_create([, winSize[, maxLevel[, crit[, flags[, minEigThreshold]]]]]) -> retval
    .
    """
    pass

def spatialGradient(src, dx=None, dy=None, ksize=None, borderType=None): # real signature unknown; restored from __doc__
    """
    spatialGradient(src[, dx[, dy[, ksize[, borderType]]]]) -> dx, dy
    .   @brief Calculates the first order image derivative in both x and y using a Sobel operator
    .   
    .   Equivalent to calling:
    .   
    .   @code
    .   Sobel( src, dx, CV_16SC1, 1, 0, 3 );
    .   Sobel( src, dy, CV_16SC1, 0, 1, 3 );
    .   @endcode
    .   
    .   @param src input image.
    .   @param dx output image with first-order derivative in x.
    .   @param dy output image with first-order derivative in y.
    .   @param ksize size of Sobel kernel. It must be 3.
    .   @param borderType pixel extrapolation method, see cv::BorderTypes
    .   
    .   @sa Sobel
    """
    pass

def split(m, mv=None): # real signature unknown; restored from __doc__
    """
    split(m[, mv]) -> mv
    .   @overload
    .   @param m input multi-channel array.
    .   @param mv output vector of arrays; the arrays themselves are reallocated, if needed.
    """
    pass

def sqrBoxFilter(_src, ddepth, ksize, _dst=None, anchor=None, normalize=None, borderType=None): # real signature unknown; restored from __doc__
    """
    sqrBoxFilter(_src, ddepth, ksize[, _dst[, anchor[, normalize[, borderType]]]]) -> _dst
    .   @brief Calculates the normalized sum of squares of the pixel values overlapping the filter.
    .   
    .   For every pixel \f$ (x, y) \f$ in the source image, the function calculates the sum of squares of those neighboring
    .   pixel values which overlap the filter placed over the pixel \f$ (x, y) \f$.
    .   
    .   The unnormalized square box filter can be useful in computing local image statistics such as the the local
    .   variance and standard deviation around the neighborhood of a pixel.
    .   
    .   @param _src input image
    .   @param _dst output image of the same size and type as _src
    .   @param ddepth the output image depth (-1 to use src.depth())
    .   @param ksize kernel size
    .   @param anchor kernel anchor point. The default value of Point(-1, -1) denotes that the anchor is at the kernel
    .   center.
    .   @param normalize flag, specifying whether the kernel is to be normalized by it's area or not.
    .   @param borderType border mode used to extrapolate pixels outside of the image, see cv::BorderTypes
    .   @sa boxFilter
    """
    pass

def sqrt(src, dst=None): # real signature unknown; restored from __doc__
    """
    sqrt(src[, dst]) -> dst
    .   @brief Calculates a square root of array elements.
    .   
    .   The function cv::sqrt calculates a square root of each input array element.
    .   In case of multi-channel arrays, each channel is processed
    .   independently. The accuracy is approximately the same as of the built-in
    .   std::sqrt .
    .   @param src input floating-point array.
    .   @param dst output array of the same size and type as src.
    """
    pass

def startWindowThread(): # real signature unknown; restored from __doc__
    """
    startWindowThread() -> retval
    .
    """
    pass

def StereoBM_create(numDisparities=None, blockSize=None): # real signature unknown; restored from __doc__
    """
    StereoBM_create([, numDisparities[, blockSize]]) -> retval
    .   @brief Creates StereoBM object
    .   
    .   @param numDisparities the disparity search range. For each pixel algorithm will find the best
    .   disparity from 0 (default minimum disparity) to numDisparities. The search range can then be
    .   shifted by changing the minimum disparity.
    .   @param blockSize the linear size of the blocks compared by the algorithm. The size should be odd
    .   (as the block is centered at the current pixel). Larger block size implies smoother, though less
    .   accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher
    .   chance for algorithm to find a wrong correspondence.
    .   
    .   The function create StereoBM object. You can then call StereoBM::compute() to compute disparity for
    .   a specific stereo pair.
    """
    pass

def stereoCalibrate(objectPoints, imagePoints1, imagePoints2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, R=None, T=None, E=None, F=None, flags=None, criteria=None): # real signature unknown; restored from __doc__
    """
    stereoCalibrate(objectPoints, imagePoints1, imagePoints2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize[, R[, T[, E[, F[, flags[, criteria]]]]]]) -> retval, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, R, T, E, F
    .   @brief Calibrates the stereo camera.
    .   
    .   @param objectPoints Vector of vectors of the calibration pattern points.
    .   @param imagePoints1 Vector of vectors of the projections of the calibration pattern points,
    .   observed by the first camera.
    .   @param imagePoints2 Vector of vectors of the projections of the calibration pattern points,
    .   observed by the second camera.
    .   @param cameraMatrix1 Input/output first camera matrix:
    .   \f$\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\f$ , \f$j = 0,\, 1\f$ . If
    .   any of CALIB_USE_INTRINSIC_GUESS , CALIB_FIX_ASPECT_RATIO ,
    .   CALIB_FIX_INTRINSIC , or CALIB_FIX_FOCAL_LENGTH are specified, some or all of the
    .   matrix components must be initialized. See the flags description for details.
    .   @param distCoeffs1 Input/output vector of distortion coefficients
    .   \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
    .   4, 5, 8, 12 or 14 elements. The output vector length depends on the flags.
    .   @param cameraMatrix2 Input/output second camera matrix. The parameter is similar to cameraMatrix1
    .   @param distCoeffs2 Input/output lens distortion coefficients for the second camera. The parameter
    .   is similar to distCoeffs1 .
    .   @param imageSize Size of the image used only to initialize intrinsic camera matrix.
    .   @param R Output rotation matrix between the 1st and the 2nd camera coordinate systems.
    .   @param T Output translation vector between the coordinate systems of the cameras.
    .   @param E Output essential matrix.
    .   @param F Output fundamental matrix.
    .   @param flags Different flags that may be zero or a combination of the following values:
    .   -   **CALIB_FIX_INTRINSIC** Fix cameraMatrix? and distCoeffs? so that only R, T, E , and F
    .   matrices are estimated.
    .   -   **CALIB_USE_INTRINSIC_GUESS** Optimize some or all of the intrinsic parameters
    .   according to the specified flags. Initial values are provided by the user.
    .   -   **CALIB_FIX_PRINCIPAL_POINT** Fix the principal points during the optimization.
    .   -   **CALIB_FIX_FOCAL_LENGTH** Fix \f$f^{(j)}_x\f$ and \f$f^{(j)}_y\f$ .
    .   -   **CALIB_FIX_ASPECT_RATIO** Optimize \f$f^{(j)}_y\f$ . Fix the ratio \f$f^{(j)}_x/f^{(j)}_y\f$
    .   .
    .   -   **CALIB_SAME_FOCAL_LENGTH** Enforce \f$f^{(0)}_x=f^{(1)}_x\f$ and \f$f^{(0)}_y=f^{(1)}_y\f$ .
    .   -   **CALIB_ZERO_TANGENT_DIST** Set tangential distortion coefficients for each camera to
    .   zeros and fix there.
    .   -   **CALIB_FIX_K1,...,CALIB_FIX_K6** Do not change the corresponding radial
    .   distortion coefficient during the optimization. If CALIB_USE_INTRINSIC_GUESS is set,
    .   the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
    .   -   **CALIB_RATIONAL_MODEL** Enable coefficients k4, k5, and k6. To provide the backward
    .   compatibility, this extra flag should be explicitly specified to make the calibration
    .   function use the rational model and return 8 coefficients. If the flag is not set, the
    .   function computes and returns only 5 distortion coefficients.
    .   -   **CALIB_THIN_PRISM_MODEL** Coefficients s1, s2, s3 and s4 are enabled. To provide the
    .   backward compatibility, this extra flag should be explicitly specified to make the
    .   calibration function use the thin prism model and return 12 coefficients. If the flag is not
    .   set, the function computes and returns only 5 distortion coefficients.
    .   -   **CALIB_FIX_S1_S2_S3_S4** The thin prism distortion coefficients are not changed during
    .   the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
    .   supplied distCoeffs matrix is used. Otherwise, it is set to 0.
    .   -   **CALIB_TILTED_MODEL** Coefficients tauX and tauY are enabled. To provide the
    .   backward compatibility, this extra flag should be explicitly specified to make the
    .   calibration function use the tilted sensor model and return 14 coefficients. If the flag is not
    .   set, the function computes and returns only 5 distortion coefficients.
    .   -   **CALIB_FIX_TAUX_TAUY** The coefficients of the tilted sensor model are not changed during
    .   the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
    .   supplied distCoeffs matrix is used. Otherwise, it is set to 0.
    .   @param criteria Termination criteria for the iterative optimization algorithm.
    .   
    .   The function estimates transformation between two cameras making a stereo pair. If you have a stereo
    .   camera where the relative position and orientation of two cameras is fixed, and if you computed
    .   poses of an object relative to the first camera and to the second camera, (R1, T1) and (R2, T2),
    .   respectively (this can be done with solvePnP ), then those poses definitely relate to each other.
    .   This means that, given ( \f$R_1\f$,\f$T_1\f$ ), it should be possible to compute ( \f$R_2\f$,\f$T_2\f$ ). You only
    .   need to know the position and orientation of the second camera relative to the first camera. This is
    .   what the described function does. It computes ( \f$R\f$,\f$T\f$ ) so that:
    .   
    .   \f[R_2=R*R_1\f]
    .   \f[T_2=R*T_1 + T,\f]
    .   
    .   Optionally, it computes the essential matrix E:
    .   
    .   \f[E= \vecthreethree{0}{-T_2}{T_1}{T_2}{0}{-T_0}{-T_1}{T_0}{0} *R\f]
    .   
    .   where \f$T_i\f$ are components of the translation vector \f$T\f$ : \f$T=[T_0, T_1, T_2]^T\f$ . And the function
    .   can also compute the fundamental matrix F:
    .   
    .   \f[F = cameraMatrix2^{-T} E cameraMatrix1^{-1}\f]
    .   
    .   Besides the stereo-related information, the function can also perform a full calibration of each of
    .   two cameras. However, due to the high dimensionality of the parameter space and noise in the input
    .   data, the function can diverge from the correct solution. If the intrinsic parameters can be
    .   estimated with high accuracy for each of the cameras individually (for example, using
    .   calibrateCamera ), you are recommended to do so and then pass CALIB_FIX_INTRINSIC flag to the
    .   function along with the computed intrinsic parameters. Otherwise, if all the parameters are
    .   estimated at once, it makes sense to restrict some parameters, for example, pass
    .   CALIB_SAME_FOCAL_LENGTH and CALIB_ZERO_TANGENT_DIST flags, which is usually a
    .   reasonable assumption.
    .   
    .   Similarly to calibrateCamera , the function minimizes the total re-projection error for all the
    .   points in all the available views from both cameras. The function returns the final value of the
    .   re-projection error.
    """
    pass

def stereoRectify(cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, R, T, R1=None, R2=None, P1=None, P2=None, Q=None, flags=None, alpha=None, newImageSize=None): # real signature unknown; restored from __doc__
    """
    stereoRectify(cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, R, T[, R1[, R2[, P1[, P2[, Q[, flags[, alpha[, newImageSize]]]]]]]]) -> R1, R2, P1, P2, Q, validPixROI1, validPixROI2
    .   @brief Computes rectification transforms for each head of a calibrated stereo camera.
    .   
    .   @param cameraMatrix1 First camera matrix.
    .   @param distCoeffs1 First camera distortion parameters.
    .   @param cameraMatrix2 Second camera matrix.
    .   @param distCoeffs2 Second camera distortion parameters.
    .   @param imageSize Size of the image used for stereo calibration.
    .   @param R Rotation matrix between the coordinate systems of the first and the second cameras.
    .   @param T Translation vector between coordinate systems of the cameras.
    .   @param R1 Output 3x3 rectification transform (rotation matrix) for the first camera.
    .   @param R2 Output 3x3 rectification transform (rotation matrix) for the second camera.
    .   @param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
    .   camera.
    .   @param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
    .   camera.
    .   @param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see reprojectImageTo3D ).
    .   @param flags Operation flags that may be zero or CALIB_ZERO_DISPARITY . If the flag is set,
    .   the function makes the principal points of each camera have the same pixel coordinates in the
    .   rectified views. And if the flag is not set, the function may still shift the images in the
    .   horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
    .   useful image area.
    .   @param alpha Free scaling parameter. If it is -1 or absent, the function performs the default
    .   scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified
    .   images are zoomed and shifted so that only valid pixels are visible (no black areas after
    .   rectification). alpha=1 means that the rectified image is decimated and shifted so that all the
    .   pixels from the original images from the cameras are retained in the rectified images (no source
    .   image pixels are lost). Obviously, any intermediate value yields an intermediate result between
    .   those two extreme cases.
    .   @param newImageSize New image resolution after rectification. The same size should be passed to
    .   initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
    .   is passed (default), it is set to the original imageSize . Setting it to larger value can help you
    .   preserve details in the original image, especially when there is a big radial distortion.
    .   @param validPixROI1 Optional output rectangles inside the rectified images where all the pixels
    .   are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
    .   (see the picture below).
    .   @param validPixROI2 Optional output rectangles inside the rectified images where all the pixels
    .   are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
    .   (see the picture below).
    .   
    .   The function computes the rotation matrices for each camera that (virtually) make both camera image
    .   planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies
    .   the dense stereo correspondence problem. The function takes the matrices computed by stereoCalibrate
    .   as input. As output, it provides two rotation matrices and also two projection matrices in the new
    .   coordinates. The function distinguishes the following two cases:
    .   
    .   -   **Horizontal stereo**: the first and the second camera views are shifted relative to each other
    .   mainly along the x axis (with possible small vertical shift). In the rectified images, the
    .   corresponding epipolar lines in the left and right cameras are horizontal and have the same
    .   y-coordinate. P1 and P2 look like:
    .   
    .   \f[\texttt{P1} = \begin{bmatrix} f & 0 & cx_1 & 0 \\ 0 & f & cy & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}\f]
    .   
    .   \f[\texttt{P2} = \begin{bmatrix} f & 0 & cx_2 & T_x*f \\ 0 & f & cy & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} ,\f]
    .   
    .   where \f$T_x\f$ is a horizontal shift between the cameras and \f$cx_1=cx_2\f$ if
    .   CALIB_ZERO_DISPARITY is set.
    .   
    .   -   **Vertical stereo**: the first and the second camera views are shifted relative to each other
    .   mainly in vertical direction (and probably a bit in the horizontal direction too). The epipolar
    .   lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like:
    .   
    .   \f[\texttt{P1} = \begin{bmatrix} f & 0 & cx & 0 \\ 0 & f & cy_1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}\f]
    .   
    .   \f[\texttt{P2} = \begin{bmatrix} f & 0 & cx & 0 \\ 0 & f & cy_2 & T_y*f \\ 0 & 0 & 1 & 0 \end{bmatrix} ,\f]
    .   
    .   where \f$T_y\f$ is a vertical shift between the cameras and \f$cy_1=cy_2\f$ if CALIB_ZERO_DISPARITY is
    .   set.
    .   
    .   As you can see, the first three columns of P1 and P2 will effectively be the new "rectified" camera
    .   matrices. The matrices, together with R1 and R2 , can then be passed to initUndistortRectifyMap to
    .   initialize the rectification map for each camera.
    .   
    .   See below the screenshot from the stereo_calib.cpp sample. Some red horizontal lines pass through
    .   the corresponding image regions. This means that the images are well rectified, which is what most
    .   stereo correspondence algorithms rely on. The green rectangles are roi1 and roi2 . You see that
    .   their interiors are all valid pixels.
    .   
    .   ![image](pics/stereo_undistort.jpg)
    """
    pass

def stereoRectifyUncalibrated(points1, points2, F, imgSize, H1=None, H2=None, threshold=None): # real signature unknown; restored from __doc__
    """
    stereoRectifyUncalibrated(points1, points2, F, imgSize[, H1[, H2[, threshold]]]) -> retval, H1, H2
    .   @brief Computes a rectification transform for an uncalibrated stereo camera.
    .   
    .   @param points1 Array of feature points in the first image.
    .   @param points2 The corresponding points in the second image. The same formats as in
    .   findFundamentalMat are supported.
    .   @param F Input fundamental matrix. It can be computed from the same set of point pairs using
    .   findFundamentalMat .
    .   @param imgSize Size of the image.
    .   @param H1 Output rectification homography matrix for the first image.
    .   @param H2 Output rectification homography matrix for the second image.
    .   @param threshold Optional threshold used to filter out the outliers. If the parameter is greater
    .   than zero, all the point pairs that do not comply with the epipolar geometry (that is, the points
    .   for which \f$|\texttt{points2[i]}^T*\texttt{F}*\texttt{points1[i]}|>\texttt{threshold}\f$ ) are
    .   rejected prior to computing the homographies. Otherwise,all the points are considered inliers.
    .   
    .   The function computes the rectification transformations without knowing intrinsic parameters of the
    .   cameras and their relative position in the space, which explains the suffix "uncalibrated". Another
    .   related difference from stereoRectify is that the function outputs not the rectification
    .   transformations in the object (3D) space, but the planar perspective transformations encoded by the
    .   homography matrices H1 and H2 . The function implements the algorithm @cite Hartley99 .
    .   
    .   @note
    .   While the algorithm does not need to know the intrinsic parameters of the cameras, it heavily
    .   depends on the epipolar geometry. Therefore, if the camera lenses have a significant distortion,
    .   it would be better to correct it before computing the fundamental matrix and calling this
    .   function. For example, distortion coefficients can be estimated for each head of stereo camera
    .   separately by using calibrateCamera . Then, the images can be corrected using undistort , or
    .   just the point coordinates can be corrected with undistortPoints .
    """
    pass

def StereoSGBM_create(minDisparity=None, numDisparities=None, blockSize=None, P1=None, P2=None, disp12MaxDiff=None, preFilterCap=None, uniquenessRatio=None, speckleWindowSize=None, speckleRange=None, mode=None): # real signature unknown; restored from __doc__
    """
    StereoSGBM_create([, minDisparity[, numDisparities[, blockSize[, P1[, P2[, disp12MaxDiff[, preFilterCap[, uniquenessRatio[, speckleWindowSize[, speckleRange[, mode]]]]]]]]]]]) -> retval
    .   @brief Creates StereoSGBM object
    .   
    .   @param minDisparity Minimum possible disparity value. Normally, it is zero but sometimes
    .   rectification algorithms can shift images, so this parameter needs to be adjusted accordingly.
    .   @param numDisparities Maximum disparity minus minimum disparity. The value is always greater than
    .   zero. In the current implementation, this parameter must be divisible by 16.
    .   @param blockSize Matched block size. It must be an odd number \>=1 . Normally, it should be
    .   somewhere in the 3..11 range.
    .   @param P1 The first parameter controlling the disparity smoothness. See below.
    .   @param P2 The second parameter controlling the disparity smoothness. The larger the values are,
    .   the smoother the disparity is. P1 is the penalty on the disparity change by plus or minus 1
    .   between neighbor pixels. P2 is the penalty on the disparity change by more than 1 between neighbor
    .   pixels. The algorithm requires P2 \> P1 . See stereo_match.cpp sample where some reasonably good
    .   P1 and P2 values are shown (like 8\*number_of_image_channels\*SADWindowSize\*SADWindowSize and
    .   32\*number_of_image_channels\*SADWindowSize\*SADWindowSize , respectively).
    .   @param disp12MaxDiff Maximum allowed difference (in integer pixel units) in the left-right
    .   disparity check. Set it to a non-positive value to disable the check.
    .   @param preFilterCap Truncation value for the prefiltered image pixels. The algorithm first
    .   computes x-derivative at each pixel and clips its value by [-preFilterCap, preFilterCap] interval.
    .   The result values are passed to the Birchfield-Tomasi pixel cost function.
    .   @param uniquenessRatio Margin in percentage by which the best (minimum) computed cost function
    .   value should "win" the second best value to consider the found match correct. Normally, a value
    .   within the 5-15 range is good enough.
    .   @param speckleWindowSize Maximum size of smooth disparity regions to consider their noise speckles
    .   and invalidate. Set it to 0 to disable speckle filtering. Otherwise, set it somewhere in the
    .   50-200 range.
    .   @param speckleRange Maximum disparity variation within each connected component. If you do speckle
    .   filtering, set the parameter to a positive value, it will be implicitly multiplied by 16.
    .   Normally, 1 or 2 is good enough.
    .   @param mode Set it to StereoSGBM::MODE_HH to run the full-scale two-pass dynamic programming
    .   algorithm. It will consume O(W\*H\*numDisparities) bytes, which is large for 640x480 stereo and
    .   huge for HD-size pictures. By default, it is set to false .
    .   
    .   The first constructor initializes StereoSGBM with all the default parameters. So, you only have to
    .   set StereoSGBM::numDisparities at minimum. The second constructor enables you to set each parameter
    .   to a custom value.
    """
    pass

def stylization(src, dst=None, sigma_s=None, sigma_r=None): # real signature unknown; restored from __doc__
    """
    stylization(src[, dst[, sigma_s[, sigma_r]]]) -> dst
    .   @brief Stylization aims to produce digital imagery with a wide variety of effects not focused on
    .   photorealism. Edge-aware filters are ideal for stylization, as they can abstract regions of low
    .   contrast while preserving, or enhancing, high-contrast features.
    .   
    .   @param src Input 8-bit 3-channel image.
    .   @param dst Output image with the same size and type as src.
    .   @param sigma_s Range between 0 to 200.
    .   @param sigma_r Range between 0 to 1.
    """
    pass

def Subdiv2D(rect=None): # real signature unknown; restored from __doc__
    """
    Subdiv2D([rect]) -> <Subdiv2D object>
    .   creates an empty Subdiv2D object.
    .   To create a new empty Delaunay subdivision you need to use the initDelaunay() function.
    """
    pass

def subtract(src1, src2, dst=None, mask=None, dtype=None): # real signature unknown; restored from __doc__
    """
    subtract(src1, src2[, dst[, mask[, dtype]]]) -> dst
    .   @brief Calculates the per-element difference between two arrays or array and a scalar.
    .   
    .   The function subtract calculates:
    .   - Difference between two arrays, when both input arrays have the same size and the same number of
    .   channels:
    .   \f[\texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1}(I) -  \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\f]
    .   - Difference between an array and a scalar, when src2 is constructed from Scalar or has the same
    .   number of elements as `src1.channels()`:
    .   \f[\texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1}(I) -  \texttt{src2} ) \quad \texttt{if mask}(I) \ne0\f]
    .   - Difference between a scalar and an array, when src1 is constructed from Scalar or has the same
    .   number of elements as `src2.channels()`:
    .   \f[\texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1} -  \texttt{src2}(I) ) \quad \texttt{if mask}(I) \ne0\f]
    .   - The reverse difference between a scalar and an array in the case of `SubRS`:
    .   \f[\texttt{dst}(I) =  \texttt{saturate} ( \texttt{src2} -  \texttt{src1}(I) ) \quad \texttt{if mask}(I) \ne0\f]
    .   where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each
    .   channel is processed independently.
    .   
    .   The first function in the list above can be replaced with matrix expressions:
    .   @code{.cpp}
    .   dst = src1 - src2;
    .   dst -= src1; // equivalent to subtract(dst, src1, dst);
    .   @endcode
    .   The input arrays and the output array can all have the same or different depths. For example, you
    .   can subtract to 8-bit unsigned arrays and store the difference in a 16-bit signed array. Depth of
    .   the output array is determined by dtype parameter. In the second and third cases above, as well as
    .   in the first case, when src1.depth() == src2.depth(), dtype can be set to the default -1. In this
    .   case the output array will have the same depth as the input array, be it src1, src2 or both.
    .   @note Saturation is not applied when the output array has the depth CV_32S. You may even get
    .   result of an incorrect sign in the case of overflow.
    .   @param src1 first input array or a scalar.
    .   @param src2 second input array or a scalar.
    .   @param dst output array of the same size and the same number of channels as the input array.
    .   @param mask optional operation mask; this is an 8-bit single channel array that specifies elements
    .   of the output array to be changed.
    .   @param dtype optional depth of the output array
    .   @sa  add, addWeighted, scaleAdd, Mat::convertTo
    """
    pass

def sumElems(src): # real signature unknown; restored from __doc__
    """
    sumElems(src) -> retval
    .   @brief Calculates the sum of array elements.
    .   
    .   The function cv::sum calculates and returns the sum of array elements,
    .   independently for each channel.
    .   @param src input array that must have from 1 to 4 channels.
    .   @sa  countNonZero, mean, meanStdDev, norm, minMaxLoc, reduce
    """
    pass

def SVBackSubst(w, u, vt, rhs, dst=None): # real signature unknown; restored from __doc__
    """
    SVBackSubst(w, u, vt, rhs[, dst]) -> dst
    .   wrap SVD::backSubst
    """
    pass

def SVDecomp(src, w=None, u=None, vt=None, flags=None): # real signature unknown; restored from __doc__
    """
    SVDecomp(src[, w[, u[, vt[, flags]]]]) -> w, u, vt
    .   wrap SVD::compute
    """
    pass

def textureFlattening(src, mask, dst=None, low_threshold=None, high_threshold=None, kernel_size=None): # real signature unknown; restored from __doc__
    """
    textureFlattening(src, mask[, dst[, low_threshold[, high_threshold[, kernel_size]]]]) -> dst
    .   @brief By retaining only the gradients at edge locations, before integrating with the Poisson solver, one
    .   washes out the texture of the selected region, giving its contents a flat aspect. Here Canny Edge
    .   Detector is used.
    .   
    .   @param src Input 8-bit 3-channel image.
    .   @param mask Input 8-bit 1 or 3-channel image.
    .   @param dst Output image with the same size and type as src.
    .   @param low_threshold Range from 0 to 100.
    .   @param high_threshold Value \> 100.
    .   @param kernel_size The size of the Sobel kernel to be used.
    .   
    .   **NOTE:**
    .   
    .   The algorithm assumes that the color of the source image is close to that of the destination. This
    .   assumption means that when the colors don't match, the source image color gets tinted toward the
    .   color of the destination image.
    """
    pass

def threshold(src, thresh, maxval, type, dst=None): # real signature unknown; restored from __doc__
    """
    threshold(src, thresh, maxval, type[, dst]) -> retval, dst
    .   @brief Applies a fixed-level threshold to each array element.
    .   
    .   The function applies fixed-level thresholding to a multiple-channel array. The function is typically
    .   used to get a bi-level (binary) image out of a grayscale image ( cv::compare could be also used for
    .   this purpose) or for removing a noise, that is, filtering out pixels with too small or too large
    .   values. There are several types of thresholding supported by the function. They are determined by
    .   type parameter.
    .   
    .   Also, the special values cv::THRESH_OTSU or cv::THRESH_TRIANGLE may be combined with one of the
    .   above values. In these cases, the function determines the optimal threshold value using the Otsu's
    .   or Triangle algorithm and uses it instead of the specified thresh . The function returns the
    .   computed threshold value. Currently, the Otsu's and Triangle methods are implemented only for 8-bit
    .   images.
    .   
    .   @note Input image should be single channel only in case of CV_THRESH_OTSU or CV_THRESH_TRIANGLE flags
    .   
    .   @param src input array (multiple-channel, 8-bit or 32-bit floating point).
    .   @param dst output array of the same size  and type and the same number of channels as src.
    .   @param thresh threshold value.
    .   @param maxval maximum value to use with the THRESH_BINARY and THRESH_BINARY_INV thresholding
    .   types.
    .   @param type thresholding type (see the cv::ThresholdTypes).
    .   
    .   @sa  adaptiveThreshold, findContours, compare, min, max
    """
    pass

def TickMeter(): # real signature unknown; restored from __doc__
    """
    TickMeter() -> <TickMeter object>
    .
    """
    pass

def trace(mtx): # real signature unknown; restored from __doc__
    """
    trace(mtx) -> retval
    .   @brief Returns the trace of a matrix.
    .   
    .   The function cv::trace returns the sum of the diagonal elements of the
    .   matrix mtx .
    .   \f[\mathrm{tr} ( \texttt{mtx} ) =  \sum _i  \texttt{mtx} (i,i)\f]
    .   @param mtx input matrix.
    """
    pass

def transform(src, m, dst=None): # real signature unknown; restored from __doc__
    """
    transform(src, m[, dst]) -> dst
    .   @brief Performs the matrix transformation of every array element.
    .   
    .   The function cv::transform performs the matrix transformation of every
    .   element of the array src and stores the results in dst :
    .   \f[\texttt{dst} (I) =  \texttt{m} \cdot \texttt{src} (I)\f]
    .   (when m.cols=src.channels() ), or
    .   \f[\texttt{dst} (I) =  \texttt{m} \cdot [ \texttt{src} (I); 1]\f]
    .   (when m.cols=src.channels()+1 )
    .   
    .   Every element of the N -channel array src is interpreted as N -element
    .   vector that is transformed using the M x N or M x (N+1) matrix m to
    .   M-element vector - the corresponding element of the output array dst .
    .   
    .   The function may be used for geometrical transformation of
    .   N -dimensional points, arbitrary linear color space transformation (such
    .   as various kinds of RGB to YUV transforms), shuffling the image
    .   channels, and so forth.
    .   @param src input array that must have as many channels (1 to 4) as
    .   m.cols or m.cols-1.
    .   @param dst output array of the same size and depth as src; it has as
    .   many channels as m.rows.
    .   @param m transformation 2x2 or 2x3 floating-point matrix.
    .   @sa perspectiveTransform, getAffineTransform, estimateAffine2D, warpAffine, warpPerspective
    """
    pass

def transpose(src, dst=None): # real signature unknown; restored from __doc__
    """
    transpose(src[, dst]) -> dst
    .   @brief Transposes a matrix.
    .   
    .   The function cv::transpose transposes the matrix src :
    .   \f[\texttt{dst} (i,j) =  \texttt{src} (j,i)\f]
    .   @note No complex conjugation is done in case of a complex matrix. It
    .   should be done separately if needed.
    .   @param src input array.
    .   @param dst output array of the same type as src.
    """
    pass

def triangulatePoints(projMatr1, projMatr2, projPoints1, projPoints2, points4D=None): # real signature unknown; restored from __doc__
    """
    triangulatePoints(projMatr1, projMatr2, projPoints1, projPoints2[, points4D]) -> points4D
    .   @brief Reconstructs points by triangulation.
    .   
    .   @param projMatr1 3x4 projection matrix of the first camera.
    .   @param projMatr2 3x4 projection matrix of the second camera.
    .   @param projPoints1 2xN array of feature points in the first image. In case of c++ version it can
    .   be also a vector of feature points or two-channel matrix of size 1xN or Nx1.
    .   @param projPoints2 2xN array of corresponding points in the second image. In case of c++ version
    .   it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1.
    .   @param points4D 4xN array of reconstructed points in homogeneous coordinates.
    .   
    .   The function reconstructs 3-dimensional points (in homogeneous coordinates) by using their
    .   observations with a stereo camera. Projections matrices can be obtained from stereoRectify.
    .   
    .   @note
    .   Keep in mind that all input data should be of float type in order for this function to work.
    .   
    .   @sa
    .   reprojectImageTo3D
    """
    pass

def undistort(src, cameraMatrix, distCoeffs, dst=None, newCameraMatrix=None): # real signature unknown; restored from __doc__
    """
    undistort(src, cameraMatrix, distCoeffs[, dst[, newCameraMatrix]]) -> dst
    .   @brief Transforms an image to compensate for lens distortion.
    .   
    .   The function transforms an image to compensate radial and tangential lens distortion.
    .   
    .   The function is simply a combination of cv::initUndistortRectifyMap (with unity R ) and cv::remap
    .   (with bilinear interpolation). See the former function for details of the transformation being
    .   performed.
    .   
    .   Those pixels in the destination image, for which there is no correspondent pixels in the source
    .   image, are filled with zeros (black color).
    .   
    .   A particular subset of the source image that will be visible in the corrected image can be regulated
    .   by newCameraMatrix. You can use cv::getOptimalNewCameraMatrix to compute the appropriate
    .   newCameraMatrix depending on your requirements.
    .   
    .   The camera matrix and the distortion parameters can be determined using cv::calibrateCamera. If
    .   the resolution of images is different from the resolution used at the calibration stage, \f$f_x,
    .   f_y, c_x\f$ and \f$c_y\f$ need to be scaled accordingly, while the distortion coefficients remain
    .   the same.
    .   
    .   @param src Input (distorted) image.
    .   @param dst Output (corrected) image that has the same size and type as src .
    .   @param cameraMatrix Input camera matrix \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
    .   @param distCoeffs Input vector of distortion coefficients
    .   \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
    .   of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
    .   @param newCameraMatrix Camera matrix of the distorted image. By default, it is the same as
    .   cameraMatrix but you may additionally scale and shift the result by using a different matrix.
    """
    pass

def undistortPoints(src, cameraMatrix, distCoeffs, dst=None, R=None, P=None): # real signature unknown; restored from __doc__
    """
    undistortPoints(src, cameraMatrix, distCoeffs[, dst[, R[, P]]]) -> dst
    .   @brief Computes the ideal point coordinates from the observed point coordinates.
    .   
    .   The function is similar to cv::undistort and cv::initUndistortRectifyMap but it operates on a
    .   sparse set of points instead of a raster image. Also the function performs a reverse transformation
    .   to projectPoints. In case of a 3D object, it does not reconstruct its 3D coordinates, but for a
    .   planar object, it does, up to a translation vector, if the proper R is specified.
    .   
    .   For each observed point coordinate \f$(u, v)\f$ the function computes:
    .   \f[
    .   \begin{array}{l}
    .   x^{"}  \leftarrow (u - c_x)/f_x  \\
    .   y^{"}  \leftarrow (v - c_y)/f_y  \\
    .   (x',y') = undistort(x^{"},y^{"}, \texttt{distCoeffs}) \\
    .   {[X\,Y\,W]} ^T  \leftarrow R*[x' \, y' \, 1]^T  \\
    .   x  \leftarrow X/W  \\
    .   y  \leftarrow Y/W  \\
    .   \text{only performed if P is specified:} \\
    .   u'  \leftarrow x {f'}_x + {c'}_x  \\
    .   v'  \leftarrow y {f'}_y + {c'}_y
    .   \end{array}
    .   \f]
    .   
    .   where *undistort* is an approximate iterative algorithm that estimates the normalized original
    .   point coordinates out of the normalized distorted point coordinates ("normalized" means that the
    .   coordinates do not depend on the camera matrix).
    .   
    .   The function can be used for both a stereo camera head or a monocular camera (when R is empty).
    .   
    .   @param src Observed point coordinates, 1xN or Nx1 2-channel (CV_32FC2 or CV_64FC2).
    .   @param dst Output ideal point coordinates after undistortion and reverse perspective
    .   transformation. If matrix P is identity or omitted, dst will contain normalized point coordinates.
    .   @param cameraMatrix Camera matrix \f$\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
    .   @param distCoeffs Input vector of distortion coefficients
    .   \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
    .   of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
    .   @param R Rectification transformation in the object space (3x3 matrix). R1 or R2 computed by
    .   cv::stereoRectify can be passed here. If the matrix is empty, the identity transformation is used.
    .   @param P New camera matrix (3x3) or new projection matrix (3x4) \f$\begin{bmatrix} {f'}_x & 0 & {c'}_x & t_x \\ 0 & {f'}_y & {c'}_y & t_y \\ 0 & 0 & 1 & t_z \end{bmatrix}\f$. P1 or P2 computed by
    .   cv::stereoRectify can be passed here. If the matrix is empty, the identity new camera matrix is used.
    """
    pass

def useOpenVX(): # real signature unknown; restored from __doc__
    """
    useOpenVX() -> retval
    .
    """
    pass

def useOptimized(): # real signature unknown; restored from __doc__
    """
    useOptimized() -> retval
    .   @brief Returns the status of optimized code usage.
    .   
    .   The function returns true if the optimized code is enabled. Otherwise, it returns false.
    """
    pass

def validateDisparity(disparity, cost, minDisparity, numberOfDisparities, disp12MaxDisp=None): # real signature unknown; restored from __doc__
    """
    validateDisparity(disparity, cost, minDisparity, numberOfDisparities[, disp12MaxDisp]) -> disparity
    .
    """
    pass

def vconcat(src, dst=None): # real signature unknown; restored from __doc__
    """
    vconcat(src[, dst]) -> dst
    .   @overload
    .   @code{.cpp}
    .   std::vector<cv::Mat> matrices = { cv::Mat(1, 4, CV_8UC1, cv::Scalar(1)),
    .   cv::Mat(1, 4, CV_8UC1, cv::Scalar(2)),
    .   cv::Mat(1, 4, CV_8UC1, cv::Scalar(3)),};
    .   
    .   cv::Mat out;
    .   cv::vconcat( matrices, out );
    .   //out:
    .   //[1,   1,   1,   1;
    .   // 2,   2,   2,   2;
    .   // 3,   3,   3,   3]
    .   @endcode
    .   @param src input array or vector of matrices. all of the matrices must have the same number of cols and the same depth
    .   @param dst output array. It has the same number of cols and depth as the src, and the sum of rows of the src.
    .   same depth.
    """
    pass

def VideoCapture(): # real signature unknown; restored from __doc__
    """
    VideoCapture() -> <VideoCapture object>
    .   @brief Default constructor
    .   @note In @ref videoio_c "C API", when you finished working with video, release CvCapture structure with
    .   cvReleaseCapture(), or use Ptr\<CvCapture\> that calls cvReleaseCapture() automatically in the
    .   destructor.
    
    
    
    VideoCapture(filename) -> <VideoCapture object>
    .   @overload
    .   @brief  Open video file or a capturing device or a IP video stream for video capturing
    .   
    .   Same as VideoCapture(const String& filename, int apiPreference) but using default Capture API backends
    
    
    
    VideoCapture(filename, apiPreference) -> <VideoCapture object>
    .   @overload
    .   @brief  Open video file or a capturing device or a IP video stream for video capturing with API Preference
    .   
    .   @param filename it can be:
    .   - name of video file (eg. `video.avi`)
    .   - or image sequence (eg. `img_%02d.jpg`, which will read samples like `img_00.jpg, img_01.jpg, img_02.jpg, ...`)
    .   - or URL of video stream (eg. `protocol://host:port/script_name?script_params|auth`).
    .   Note that each video stream or IP camera feed has its own URL scheme. Please refer to the
    .   documentation of source stream to know the right URL.
    .   @param apiPreference preferred Capture API backends to use. Can be used to enforce a specific reader
    .   implementation if multiple are available: e.g. cv::CAP_FFMPEG or cv::CAP_IMAGES or cv::CAP_DSHOW.
    .   @sa The list of supported API backends cv::VideoCaptureAPIs
    
    
    
    VideoCapture(index) -> <VideoCapture object>
    .   @overload
    .   @brief  Open a camera for video capturing
    .   
    .   @param index camera_id + domain_offset (CAP_*) id of the video capturing device to open. To open default camera using default backend just pass 0.
    .   Use a `domain_offset` to enforce a specific reader implementation if multiple are available like cv::CAP_FFMPEG or cv::CAP_IMAGES or cv::CAP_DSHOW.
    .   e.g. to open Camera 1 using the MS Media Foundation API use `index = 1 + cv::CAP_MSMF`
    .   
    .   @sa The list of supported API backends cv::VideoCaptureAPIs
    """
    pass

def VideoWriter(): # real signature unknown; restored from __doc__
    """
    VideoWriter() -> <VideoWriter object>
    .   @brief Default constructors
    .   
    .   The constructors/functions initialize video writers.
    .   -   On Linux FFMPEG is used to write videos;
    .   -   On Windows FFMPEG or VFW is used;
    .   -   On MacOSX QTKit is used.
    
    
    
    VideoWriter(filename, fourcc, fps, frameSize[, isColor]) -> <VideoWriter object>
    .   @overload
    .   @param filename Name of the output video file.
    .   @param fourcc 4-character code of codec used to compress the frames. For example,
    .   VideoWriter::fourcc('P','I','M','1') is a MPEG-1 codec, VideoWriter::fourcc('M','J','P','G') is a
    .   motion-jpeg codec etc. List of codes can be obtained at [Video Codecs by
    .   FOURCC](http://www.fourcc.org/codecs.php) page. FFMPEG backend with MP4 container natively uses
    .   other values as fourcc code: see [ObjectType](http://www.mp4ra.org/codecs.html),
    .   so you may receive a warning message from OpenCV about fourcc code conversion.
    .   @param fps Framerate of the created video stream.
    .   @param frameSize Size of the video frames.
    .   @param isColor If it is not zero, the encoder will expect and encode color frames, otherwise it
    .   will work with grayscale frames (the flag is currently supported on Windows only).
    .   
    .   @b Tips:
    .   - With some backends `fourcc=-1` pops up the codec selection dialog from the system.
    .   - To save image sequence use a proper filename (eg. `img_%02d.jpg`) and `fourcc=0`
    .   OR `fps=0`. Use uncompressed image format (eg. `img_%02d.BMP`) to save raw frames.
    .   - Most codecs are lossy. If you want lossless video file you need to use a lossless codecs
    .   (eg. FFMPEG FFV1, Huffman HFYU, Lagarith LAGS, etc...)
    .   - If FFMPEG is enabled, using `codec=0; fps=0;` you can create an uncompressed (raw) video file.
    
    
    
    VideoWriter(filename, apiPreference, fourcc, fps, frameSize[, isColor]) -> <VideoWriter object>
    .   @overload
    .   The `apiPreference` parameter allows to specify API backends to use. Can be used to enforce a specific reader implementation
    .   if multiple are available: e.g. cv::CAP_FFMPEG or cv::CAP_GSTREAMER.
    """
    pass

def VideoWriter_fourcc(c1, c2, c3, c4): # real signature unknown; restored from __doc__
    """
    VideoWriter_fourcc(c1, c2, c3, c4) -> retval
    .   @brief Concatenates 4 chars to a fourcc code
    .   
    .   @return a fourcc code
    .   
    .   This static method constructs the fourcc code of the codec to be used in the constructor
    .   VideoWriter::VideoWriter or VideoWriter::open.
    """
    pass

def waitKey(delay=None): # real signature unknown; restored from __doc__
    """
    waitKey([, delay]) -> retval
    .   @brief Waits for a pressed key.
    .   
    .   The function waitKey waits for a key event infinitely (when \f$\texttt{delay}\leq 0\f$ ) or for delay
    .   milliseconds, when it is positive. Since the OS has a minimum time between switching threads, the
    .   function will not wait exactly delay ms, it will wait at least delay ms, depending on what else is
    .   running on your computer at that time. It returns the code of the pressed key or -1 if no key was
    .   pressed before the specified time had elapsed.
    .   
    .   @note
    .   
    .   This function is the only method in HighGUI that can fetch and handle events, so it needs to be
    .   called periodically for normal event processing unless HighGUI is used within an environment that
    .   takes care of event processing.
    .   
    .   @note
    .   
    .   The function only works if there is at least one HighGUI window created and the window is active.
    .   If there are several HighGUI windows, any of them can be active.
    .   
    .   @param delay Delay in milliseconds. 0 is the special value that means "forever".
    """
    pass

def waitKeyEx(delay=None): # real signature unknown; restored from __doc__
    """
    waitKeyEx([, delay]) -> retval
    .   @brief Similar to #waitKey, but returns full key code.
    .   
    .   @note
    .   
    .   Key code is implementation specific and depends on used backend: QT/GTK/Win32/etc
    """
    pass

def warpAffine(src, M, dsize, dst=None, flags=None, borderMode=None, borderValue=None): # real signature unknown; restored from __doc__
    """
    warpAffine(src, M, dsize[, dst[, flags[, borderMode[, borderValue]]]]) -> dst
    .   @brief Applies an affine transformation to an image.
    .   
    .   The function warpAffine transforms the source image using the specified matrix:
    .   
    .   \f[\texttt{dst} (x,y) =  \texttt{src} ( \texttt{M} _{11} x +  \texttt{M} _{12} y +  \texttt{M} _{13}, \texttt{M} _{21} x +  \texttt{M} _{22} y +  \texttt{M} _{23})\f]
    .   
    .   when the flag WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted
    .   with cv::invertAffineTransform and then put in the formula above instead of M. The function cannot
    .   operate in-place.
    .   
    .   @param src input image.
    .   @param dst output image that has the size dsize and the same type as src .
    .   @param M \f$2\times 3\f$ transformation matrix.
    .   @param dsize size of the output image.
    .   @param flags combination of interpolation methods (see cv::InterpolationFlags) and the optional
    .   flag WARP_INVERSE_MAP that means that M is the inverse transformation (
    .   \f$\texttt{dst}\rightarrow\texttt{src}\f$ ).
    .   @param borderMode pixel extrapolation method (see cv::BorderTypes); when
    .   borderMode=BORDER_TRANSPARENT, it means that the pixels in the destination image corresponding to
    .   the "outliers" in the source image are not modified by the function.
    .   @param borderValue value used in case of a constant border; by default, it is 0.
    .   
    .   @sa  warpPerspective, resize, remap, getRectSubPix, transform
    """
    pass

def warpPerspective(src, M, dsize, dst=None, flags=None, borderMode=None, borderValue=None): # real signature unknown; restored from __doc__
    """
    warpPerspective(src, M, dsize[, dst[, flags[, borderMode[, borderValue]]]]) -> dst
    .   @brief Applies a perspective transformation to an image.
    .   
    .   The function warpPerspective transforms the source image using the specified matrix:
    .   
    .   \f[\texttt{dst} (x,y) =  \texttt{src} \left ( \frac{M_{11} x + M_{12} y + M_{13}}{M_{31} x + M_{32} y + M_{33}} ,
    .   \frac{M_{21} x + M_{22} y + M_{23}}{M_{31} x + M_{32} y + M_{33}} \right )\f]
    .   
    .   when the flag WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted with invert
    .   and then put in the formula above instead of M. The function cannot operate in-place.
    .   
    .   @param src input image.
    .   @param dst output image that has the size dsize and the same type as src .
    .   @param M \f$3\times 3\f$ transformation matrix.
    .   @param dsize size of the output image.
    .   @param flags combination of interpolation methods (INTER_LINEAR or INTER_NEAREST) and the
    .   optional flag WARP_INVERSE_MAP, that sets M as the inverse transformation (
    .   \f$\texttt{dst}\rightarrow\texttt{src}\f$ ).
    .   @param borderMode pixel extrapolation method (BORDER_CONSTANT or BORDER_REPLICATE).
    .   @param borderValue value used in case of a constant border; by default, it equals 0.
    .   
    .   @sa  warpAffine, resize, remap, getRectSubPix, perspectiveTransform
    """
    pass

def watershed(image, markers): # real signature unknown; restored from __doc__
    """
    watershed(image, markers) -> markers
    .   @brief Performs a marker-based image segmentation using the watershed algorithm.
    .   
    .   The function implements one of the variants of watershed, non-parametric marker-based segmentation
    .   algorithm, described in @cite Meyer92 .
    .   
    .   Before passing the image to the function, you have to roughly outline the desired regions in the
    .   image markers with positive (\>0) indices. So, every region is represented as one or more connected
    .   components with the pixel values 1, 2, 3, and so on. Such markers can be retrieved from a binary
    .   mask using findContours and drawContours (see the watershed.cpp demo). The markers are "seeds" of
    .   the future image regions. All the other pixels in markers , whose relation to the outlined regions
    .   is not known and should be defined by the algorithm, should be set to 0's. In the function output,
    .   each pixel in markers is set to a value of the "seed" components or to -1 at boundaries between the
    .   regions.
    .   
    .   @note Any two neighbor connected components are not necessarily separated by a watershed boundary
    .   (-1's pixels); for example, they can touch each other in the initial marker image passed to the
    .   function.
    .   
    .   @param image Input 8-bit 3-channel image.
    .   @param markers Input/output 32-bit single-channel image (map) of markers. It should have the same
    .   size as image .
    .   
    .   @sa findContours
    .   
    .   @ingroup imgproc_misc
    """
    pass

# classes

class error(Exception):
    # no doc
    def __init__(self, *args, **kwargs): # real signature unknown
        pass

    __weakref__ = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default
    """list of weak references to the object (if defined)"""



class UMat(object):
    """ OpenCV 3 UMat wrapper. Used for T-API support. """
    def context(self, *args, **kwargs): # real signature unknown
        """ Returns OpenCL context handle """
        pass

    def get(self, *args, **kwargs): # real signature unknown
        """ Returns numpy array """
        pass

    def handle(self, *args, **kwargs): # real signature unknown
        """ Returns UMat native handle """
        pass

    def isContinuous(self, *args, **kwargs): # real signature unknown
        """ Returns true if the matrix data is continuous """
        pass

    def isSubmatrix(self, *args, **kwargs): # real signature unknown
        """ Returns true if the matrix is a submatrix of another matrix """
        pass

    def queue(self, *args, **kwargs): # real signature unknown
        """ Returns OpenCL queue handle """
        pass

    def __init__(self, *args, **kwargs): # real signature unknown
        pass

    @staticmethod # known case of __new__
    def __new__(*args, **kwargs): # real signature unknown
        """ Create and return a new object.  See help(type) for accurate signature. """
        pass

    offset = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default



# variables with complex values

__loader__ = __loader__

__spec__ = __spec__