๐Ÿ“ฆ langgenius / dify

๐Ÿ“„ hit_testing_service.py ยท 194 lines
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194import json
import logging
import time
from typing import Any

from core.app.app_config.entities import ModelConfig
from core.model_runtime.entities import LLMMode
from core.rag.datasource.retrieval_service import RetrievalService
from core.rag.index_processor.constant.query_type import QueryType
from core.rag.models.document import Document
from core.rag.retrieval.dataset_retrieval import DatasetRetrieval
from core.rag.retrieval.retrieval_methods import RetrievalMethod
from extensions.ext_database import db
from models import Account
from models.dataset import Dataset, DatasetQuery

logger = logging.getLogger(__name__)

default_retrieval_model = {
    "search_method": RetrievalMethod.SEMANTIC_SEARCH,
    "reranking_enable": False,
    "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
    "top_k": 4,
    "score_threshold_enabled": False,
}


class HitTestingService:
    @classmethod
    def retrieve(
        cls,
        dataset: Dataset,
        query: str,
        account: Account,
        retrieval_model: Any,  # FIXME drop this any
        external_retrieval_model: dict,
        attachment_ids: list | None = None,
        limit: int = 10,
    ):
        start = time.perf_counter()

        # get retrieval model , if the model is not setting , using default
        if not retrieval_model:
            retrieval_model = dataset.retrieval_model or default_retrieval_model
        document_ids_filter = None
        metadata_filtering_conditions = retrieval_model.get("metadata_filtering_conditions", {})
        if metadata_filtering_conditions and query:
            dataset_retrieval = DatasetRetrieval()

            from core.app.app_config.entities import MetadataFilteringCondition

            metadata_filtering_conditions = MetadataFilteringCondition.model_validate(metadata_filtering_conditions)

            metadata_filter_document_ids, metadata_condition = dataset_retrieval.get_metadata_filter_condition(
                dataset_ids=[dataset.id],
                query=query,
                metadata_filtering_mode="manual",
                metadata_filtering_conditions=metadata_filtering_conditions,
                inputs={},
                tenant_id="",
                user_id="",
                metadata_model_config=ModelConfig(provider="", name="", mode=LLMMode.CHAT, completion_params={}),
            )
            if metadata_filter_document_ids:
                document_ids_filter = metadata_filter_document_ids.get(dataset.id, [])
            if metadata_condition and not document_ids_filter:
                return cls.compact_retrieve_response(query, [])
        all_documents = RetrievalService.retrieve(
            retrieval_method=RetrievalMethod(retrieval_model.get("search_method", RetrievalMethod.SEMANTIC_SEARCH)),
            dataset_id=dataset.id,
            query=query,
            attachment_ids=attachment_ids,
            top_k=retrieval_model.get("top_k", 4),
            score_threshold=retrieval_model.get("score_threshold", 0.0)
            if retrieval_model["score_threshold_enabled"]
            else 0.0,
            reranking_model=retrieval_model.get("reranking_model", None)
            if retrieval_model["reranking_enable"]
            else None,
            reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
            weights=retrieval_model.get("weights", None),
            document_ids_filter=document_ids_filter,
        )

        end = time.perf_counter()
        logger.debug("Hit testing retrieve in %s seconds", end - start)
        dataset_queries = []
        if query:
            content = {"content_type": QueryType.TEXT_QUERY, "content": query}
            dataset_queries.append(content)
        if attachment_ids:
            for attachment_id in attachment_ids:
                content = {"content_type": QueryType.IMAGE_QUERY, "content": attachment_id}
                dataset_queries.append(content)
        if dataset_queries:
            dataset_query = DatasetQuery(
                dataset_id=dataset.id,
                content=json.dumps(dataset_queries),
                source="hit_testing",
                source_app_id=None,
                created_by_role="account",
                created_by=account.id,
            )
            db.session.add(dataset_query)
        db.session.commit()

        return cls.compact_retrieve_response(query, all_documents)

    @classmethod
    def external_retrieve(
        cls,
        dataset: Dataset,
        query: str,
        account: Account,
        external_retrieval_model: dict | None = None,
        metadata_filtering_conditions: dict | None = None,
    ):
        if dataset.provider != "external":
            return {
                "query": {"content": query},
                "records": [],
            }

        start = time.perf_counter()

        all_documents = RetrievalService.external_retrieve(
            dataset_id=dataset.id,
            query=cls.escape_query_for_search(query),
            external_retrieval_model=external_retrieval_model,
            metadata_filtering_conditions=metadata_filtering_conditions,
        )

        end = time.perf_counter()
        logger.debug("External knowledge hit testing retrieve in %s seconds", end - start)

        dataset_query = DatasetQuery(
            dataset_id=dataset.id,
            content=query,
            source="hit_testing",
            source_app_id=None,
            created_by_role="account",
            created_by=account.id,
        )

        db.session.add(dataset_query)
        db.session.commit()

        return dict(cls.compact_external_retrieve_response(dataset, query, all_documents))

    @classmethod
    def compact_retrieve_response(cls, query: str, documents: list[Document]) -> dict[Any, Any]:
        records = RetrievalService.format_retrieval_documents(documents)

        return {
            "query": {
                "content": query,
            },
            "records": [record.model_dump() for record in records],
        }

    @classmethod
    def compact_external_retrieve_response(cls, dataset: Dataset, query: str, documents: list) -> dict[Any, Any]:
        records = []
        if dataset.provider == "external":
            for document in documents:
                record = {
                    "content": document.get("content", None),
                    "title": document.get("title", None),
                    "score": document.get("score", None),
                    "metadata": document.get("metadata", None),
                }
                records.append(record)
            return {
                "query": {"content": query},
                "records": records,
            }
        return {"query": {"content": query}, "records": []}

    @classmethod
    def hit_testing_args_check(cls, args):
        query = args.get("query")
        attachment_ids = args.get("attachment_ids")

        if not attachment_ids and not query:
            raise ValueError("Query or attachment_ids is required")
        if query and len(query) > 250:
            raise ValueError("Query cannot exceed 250 characters")
        if attachment_ids and not isinstance(attachment_ids, list):
            raise ValueError("Attachment_ids must be a list")

    @staticmethod
    def escape_query_for_search(query: str) -> str:
        return query.replace('"', '\\"')