๐Ÿ“ฆ google-gemini / cookbook

๐Ÿ“„ multi_spectral_remote_sensing.ipynb ยท 903 lines
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Tce3stUlHN0L"
      },
      "source": [
        "##### Copyright 2025 Google LLC."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "cellView": "form",
        "id": "tuOe1ymfHZPu"
      },
      "outputs": [],
      "source": [
        "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n",
        "# you may not use this file except in compliance with the License.\n",
        "# You may obtain a copy of the License at\n",
        "#\n",
        "# https://www.apache.org/licenses/LICENSE-2.0\n",
        "#\n",
        "# Unless required by applicable law or agreed to in writing, software\n",
        "# distributed under the License is distributed on an \"AS IS\" BASIS,\n",
        "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
        "# See the License for the specific language governing permissions and\n",
        "# limitations under the License."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "qFdPvlXBOdUN"
      },
      "source": [
        "# Multi-spectral remote sensing with Gemini"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "MfBg1C5NB3X0"
      },
      "source": [
        "<a target=\"_blank\" href=\"https://colab.research.google.com/github/google-gemini/cookbook/blob/main/examples/multi_spectral_remote_sensing.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" height=30/></a>"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "xHxb-dlhMIzW"
      },
      "source": [
        "In this notebook, you'll learn how to use Gemini's image understanding capabilities for multi-spectral analysis and remote sensing.\n",
        "\n",
        "### What is remote sensing?\n",
        "\n",
        "Remote sensing is the process of acquiring information about an object or area without making physical contact with it. It's essentially \"seeing\" and measuring something from a distance.\n",
        "\n",
        "The most common form of remote sensing involves using sensors on satellites to collect data about the Earth's surface. Having a record of images of the Earth's surface across time enables us to track changes like: Where are forests disappearing? Where are fires occurring? And answer questions like: Are the crops in this field healthy? What is the solar potential of this roof? All of these questions (and more!) can be answered with the help of satellite data.\n",
        "\n",
        "Much of the power of these satellite images lies in their ability to capture multi-spectral data. Instead of the 3 RGB bands you're used to, these satellites can capture data across many different bands of the electromagnetic spectrum, including those humans can't see, like Near-Infrared (NIR) and Short-Wave Infrared (SWIR). Certain wavelengths are beneficial for certain use cases, for example:\n",
        "\n",
        "* **Vegetation Health**: Healthy plants reflect a lot of NIR light. By looking at the NIR band, you can assess crop health or monitor deforestation far more accurately than with a simple green photo.\n",
        "* **Water Detection**: Water absorbs infrared light, making it easy to distinguish from land, map floodplains, or even analyze water quality.\n",
        "* **Burn Scars**: SWIR bands are excellent at piercing through smoke and identifying recently burned areas after a wildfire.\n",
        "* **Material Identification**: Different minerals and man-made materials have unique spectral \"fingerprints,\" allowing you to identify them from space.\n",
        "\n",
        "Mulitmodal foundation models like Gemini are trained to understand RGB images and not all of these other possible spectral bands. However, by mapping other parts of the electromagnetic spectrum to the RGB space and providing domain-specific instructions, you can leverage Gemini's understanding of the visual space for zero-shot prompting of multi-spectral images.\n",
        "\n",
        "In this notebook you'll learn how to leverage these generalist multimodal models for specialized tasks without additional training or fine-tuning."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "cqQFPoK3LDMY"
      },
      "source": [
        "This notebook is based off of the paper from Google DeepMind and Google Research, [*Zero-Shot Multi-Spectral Learning: Reimagining a Generalist Multimodal Gemini 2.5 Model for Remote Sensing Applications*](https://arxiv.org/pdf/2509.19087)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "monLpKy7423V"
      },
      "source": [
        "## Setup"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "5mi7BrkD44MF"
      },
      "source": [
        "### Install SDK"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 1,
      "metadata": {
        "id": "AQJjzmYgH3sX"
      },
      "outputs": [],
      "source": [
        "%pip install -U -q \"google-genai>=1.0.0\"  # Install the Python SDK\n",
        "\n",
        "# Always set at least 1.0.0 as the minimal version as there were breaking\n",
        "# changes through the previous versions\n",
        "# Of course, if your notebook uses a new feature and needs a more recent\n",
        "# version, set the right minimum version to indicate when the feature was\n",
        "# introduced.\n",
        "# Always test your notebook with that fixed version (eg. '==1.0.0') to make.\n",
        "# sure it's really the minimum version.\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "MUXex9ctTuDB"
      },
      "source": [
        "### Set up your API key\n",
        "\n",
        "To run the following cell, your API key must be stored it in a Colab Secret named `GEMINI_API_KEY`. If you don't already have an API key, or you're not sure how to create a Colab Secret, see the [Authentication ![image](https://storage.googleapis.com/generativeai-downloads/images/colab_icon16.png)](../quickstarts/Authentication.ipynb) quickstart for an example."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 2,
      "metadata": {
        "id": "wltbMJLIIXGk"
      },
      "outputs": [],
      "source": [
        "from google.colab import userdata\n",
        "from google import genai\n",
        "\n",
        "GEMINI_API_KEY = userdata.get('GEMINI_API_KEY')\n",
        "client = genai.Client(api_key=GEMINI_API_KEY)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "hL54YG-kMDVF"
      },
      "source": [
        "For this notebook, use Gemini 2.5 Pro."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 3,
      "metadata": {
        "id": "Lf6FamchMDsk"
      },
      "outputs": [],
      "source": [
        "MODEL_ID = \"gemini-3-flash-preview\" # @param [\"gemini-2.5-flash-lite\", \"gemini-2.5-flash\", \"gemini-2.5-pro\", \"gemini-2.5-flash-preview\", \"gemini-3-pro-preview\"] {\"allow-input\":true, isTemplate: true}"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "w5i8tMZKIeUu"
      },
      "source": [
        "## Remote sensing with RGB images\n",
        "\n",
        "First, test Gemini's abilitiy to interpret satellite data with an RGB only image."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "BzwUFUBXcSJV"
      },
      "source": [
        "Here is an image of a forest taken with the [satellite Sentinel 2](https://colab.research.google.com/drive/1d-5VhuBn-s8cMCZu5xNi5Kl0vHxIiGms?resourcekey=0-lGdXpPdLgoID90O4AtdYzA#scrollTo=BzwUFUBXcSJV&line=1&uniqifier=1)."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 48,
      "metadata": {
        "id": "v9nqvUh98GKm"
      },
      "outputs": [],
      "source": [
        "from IPython.display import display, Markdown, Image"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 60,
      "metadata": {
        "id": "EVTpeu-1EZUg"
      },
      "outputs": [],
      "source": [
        "!wget -q https://storage.googleapis.com/generativeai-downloads/gemini-cookbook/images/remote-sensing/forest.png -O forest.png"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 61,
      "metadata": {
        "id": "DKlrb8hoAXVU"
      },
      "outputs": [
        {
          "data": {
            "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAMAAwADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDiKKKK6TjENJSmkplIKKKKACkpaSgQtFFFIYtFFFABQKKBTAKKKKBhSGlpDSJGmgUGgUDFp1Np1MAooooAaaSlNJQACnimCnigBRS0gpaQhKKKKBhS0lLQAhpKU0lAC0hpaQ0CEooopgLRRRQAUUUUDQlFFFA2Ap1NFOoJFpKWkpAFFFFAxKSlpKACkpaSgAooopgAp1NFOpCFpaSloGFNNOppoAaaSlNJTAUUtIKWkIKKKKAAUtIKWgAppp1NNMY2nCm04UAKKdTRTqQC0tJS0AJRRRQAlJS0lAgpKWkpgFFFFAwpaSloEFFFFABSUtJQMKKKKQC0UUUCCkxS0tAxKKWkoASilpKYgooopDFopRRQAlFBoFABRS0UDYlFFFBI3FGKdijFAxtLQaSgB1JSZozTADSUtFIAApwpAKWgBRS0CigQlFFFAwpaKKAENJTjSUAFJRQaBCUUlFMBaWkpaACilpKQISilpKYxRS0gpaQBRSUUCFopKKBhijFOFBFADKSnGmmgAopKWmAtKKSgUgHUtJRQAtNNLSUANNJTqTFMAFLRRQIKKKSkA4UUCloASmmn0hoGMpaMUUwHClpBS0gFozTaM0AOzSZpuaM0ALmikopiFpMUtLigBtFOxSUAJRmg0lAC0uabRmgBxpM0lJQNDqKSlpALijFLRQITFLRSZoAKKQmimAtFApaQBiilooGAoozSUAIaBRS0AFITSmmGgBc0optOFAx1JSg0UhDTTTT8UmKYDDS0uKMUwClAoFOFIBMUuKWikAlFFLTASilopAJSGgmkzTAWg0maXNAAaaaWigBDSUpFJTAUUopBTqQgopRRQAmKSlooGJRSGgUwFpcUClpCExSUtJQMWlzTaKAA0lLRQAmKKWigBKKKKAFzRmkpKYC5pabS0ALSUuaSkAUUUUwCjFFLSEFGaKKBhmikpaAExRilooABS0lFAAaQ0tNIoAKKMUuKYMSlFGKXFIBRRRSGgQUmaWkNAxKSg0lMB1FIKWmAUlLRSAKKKKAHUUlFIBc0lFLigBtApSKQUwHClpBRmkA6kzSZpCaAHUmabmlzQAtFJS0AFJS0YoAbSijFFAC0uaSloGLRiilpAJikxTqSmISlFIaKAHZpKKKQBS0lFAC00mjNNJpiDNJRRTGGaUGkpRQAtLQKKQAaSlpKAAUtJS0CCiikzQAUZpKKAQUooooGOopKKBBSUtFAxKKKKBCUUUtMYUUYopAFFJmloASlxRRQAYpDTqSgENop2KTFABQaXFIRQISloxRTAWikpaQBRRRQMKKWigBKKWkoAWkIpc0lACYpQKKKYC0UlGaQC0lFFAhDSUppKYxKMUtFABS0lLQAlFLSUCCiiigYtFLRQAUtFFIBCKTFPxRigBuKMU6igBpFNIp9IRQA3FAFOApcUXAQCjFOxSUAFFFLQAmKTFOpaQxlLS0lMBaWm0uaQBmkNBpKYBS0CloEFJS0hpALRTaKYAaSloxTAbRinYpcUgGYpRS4oxQA4UGkpDQAtJRmimAUUUtAhKSlpKAEpaKUUAgooooGFLSUUALRRRSEwpKWigBMUtLRQMSkpaKAG0UpptAC0tNpaYDqM0lGaQIWigUUAFIaKKBBSYpaKAEpaDRQMKWkpaAClpKKAFpMUtIaAEooooAKKWigQ00lBoFAxaKUUUAFNp1JQIKKKKYCUtFJQMWkoooEFGKWjFAx9FJRSCwtJRmigAozSE0maBDs0uaZSigY6kxS0UAGKWiigBKSiigAozRSUAOzRTaUUALRSiikAlJS5pKYBRiiloASlFFKKAA0004mmmgBKBRS0AFFLSE0CCikpcUDCilxSUCCmmnU00AJRmkopjHUtNozQIXNJRmjNAxaWkFOFAhKSlNNNAC0ZpKTFAx2aTNIaTNADwadmoxTs0AOzRSZozSAWikpaBCGkpaKBiYopaKACkoopgLRSUtAgooooAWkzRSUAFLRRQMKKKKQC0UlKKAFoNFBNIBtKKSlFMApDSmmk0IQUgpc0UxiiigUUhBRS0hoASiiimAU0mlppoGGaXNMpwoAeKWmiloEOooopFBRRSUCENJS0YpgApaBQaQhaWmZp1AxaKSjNAC0YpuaUUALTadSYoASlFGKBQA4U0mlppoAM0UlLQAtLSUtIAopaKYCGmmn4puKAEFLRRQAmaM0lFMAp4poFPFIBKQ040hoAbSUppppgFFJRQIWkzSUUABNANJSimMUU8U0U4VIBSGnUmKBDaWlxRimMaaYakNNIoAQU6gClIoATNGaQ0UALmnU2nUCCiiikMKKKKBCUUUYpjClpKBQIWilFFIBKSlooGFFFLQAlFFFMBaWkpaQCE0maWkoASlopaAENMNPNNIpoBBTqTFLQAClpKWkIKSlpKYBRRRQMSmmnUlADKUUuKMUwFpaSikBJRS0UgEpMU7FGKAG4pcUuKKAEpDQaSgBKdSUUALRRS0AJilAoxS0AFFFFAMKKKQ0AFIaKSkAUtApaYBS0UUgFpabSigYtJRSUAFJilopiGUtLijFAAKcKQClpMANNJpTTM0ABppp1JVANopcUlMAoxTsUuKQhuKMU7FLigYgp1JRSAWiiikAUGig0wEpDTqQ0AIKU0UGgQw0UtLTGFLSUtIBaSlooASkpaKYgooxS0hjaKU0lMBwNGaTNJmkIUmkzSZpaYCilpopaQxKWilxQAgpaKKACiiigAooooAKSlooENopaSgApaSlFAC0mKWlxQA2g0tIaBjaKKKYBRS0UAJikpcUUCJKKKKkYUZopM0ALSE0maTNMAJopKWmAUUYpcUAAp1NFLSAdikNLmkNIBM0maDSYpgLmikApcUAFFLRQAUtFFAwoopDQIKAaTFFAx1JSZpM0CH0U0GlzQAtFJmloAWiiikAhplOJpuaYwxRS5pM0CExRijNLTAAKdigUtIQmKKXNJmgYlJmlJphNADs0oNMzSigB4paQUUAFNNONNxQAtLSCloASjFLRQISigikxQNC5paSigBaKKXNAhKTNKaaaBgTRSUUwFooozQIBSgUgp4pAJijFOozQMTFJS0lIBKKWimAUtJRQAUmaKSgB1FJS0CENNzSmkoGGaUGm4pwFMQ4U4U0UtIAppp2aQ0ANopaKBiUUtJQAUUUtMQ6im5ozSKFJphNONNoQCZopcUAUwFFLQBS0hBRS0UhiGkp2KTFMAzRRSUCFoozRQAUUtFACUUtJSAKTNGaKYxaXFGKKBBimmnU00DGk0maWjFMTAGlzSUUALmnCmU4UgH0lITTSaABjTc0E02mA7NGaSigBaUUgpwFDAUU40gpaQhpNNJpxppoGITSUtGKYCUopQKXFAAKWijFIApcUYpaAEoopKAFooooEFGKKKACkpaSgYuaM0lFAATTaWjFMBKKKKACkzRRQAop4pgp4pMQtFJRmgYtJRRigQUUUUDFpDRRQAUlLRQAlFLRQAhpMUuKXFADcU4CiigQtJmikoAM0lFFMApwpKWkAUhpTTSaAFpabmlzQAYoxT8UYoKGYoxT8UlADcUU6koEFLRRQAUtAopDCkpaKBDaSnUhpiEpaSigY4UZpuaM0AKTSUlKKADFKBS0UAFGaDTc0ALSGlooAbijFLiloAaaTFONGKBiYpcU4CkoEIaaacaaaAGkUmKdilApgNxS4p2KXFFwGgU6lxSUgFzRmmk0maAHZppozSigBMUuKdijFACYpaXFAoATFLS4pKQBRSE0lMANJS0UCFoopppjFzRmmk0maVhD80U0GnUDCkNOppoEJmlzTaKYxSaKSigBaUCgCnAUAIBS4pcUtIBppKcaSgAFLSCloAKaadSGgBKWiigAooopAFFLRQAUUUUwEooNJQIKKWlxQA3FGKdilxQA3FFOphoGBNMNGaKYgpc0lFAyXNGaSikAuaKSigBaSkNFAx1FJS0CCjNFJSAXNJmikpgGaTNIaSgBc0ZpKUCmAZpc0lGKAFpRSYpaQC0uaSkoAWkopaACiiigApM0pppNAhc0Cm5ozTGPBoJpBRSASkpcUYoAQU4UmKUUAOAopQaQmgBDTSaU000CCkoxS4pjEpwpuKcKQDqM0lJQA7NLTBTs0ALSE0ZppNAC5pKTNLTAWlpBS0hBSEU6igY0ikxT6SgBuKWjFFAC9qYafimkUCG0UUUxhSgUYpQKAFApwpAKdSAKTNLSUgENJSmkpgLS0lKDQAGg0tJSAKSlpKYBRSGigBc0ZpMUUAOooFKaAGmm0ppKYCinUwGnA0mIWjNJmgmgBSajJpSaaaEAlLSCnCmDEop1JQBJRRRUjEopaMUANop2KTFMYClFJilxQIKKXFFADaSnUlADcUmKdRigBoFKBS4paAExRilooAKKKTNABRSZpuaAH0tM3UbqYD6KbmnCkAhphqQ0w00A3NANFKBQA4UtAFKKQBijFLRQA3FFONJQAmaWjFFACUmKWigBMUYp2KMUDG4paXFGKBDTTacaTFCABTqQUtACE00mlNJTAQGnCm4pwoAWlFNpwpAOFLSCikAppppaKYxKXFFLSEJTSKdSUwG4pKdSYpgAp1JS5pAOAopM0maQC0lGaTNMBaSkzRmgBc0uaZmlBoAfRTQadmgApKWkoAKKKM0AFFJmkzQA8UUzNGaLCHGmGlzSUwEpwNJijFAC5ozSYpcUDG0UuKMUCEFOFJilFAAaKDRQA+iiipGFLSUmaBi0UUUCFopaSgYUUlFAhaSkopgFFFFABRRRQAtBNJRmgBDTaU0UwGmkNPpMUAMpRS4opjFFOBptGaQh5NMNKTTc0AFApKUUASClpopaQC0UmaWgAooopAJRRRQAlLSUUwHUUlLSAKQ0ZopgJSYp1GKAEopcUlACYoxS0uKAGYoxUmKTFMBuKXFLilxQISiig0hhS02loAWikooAKKSlFABQaWmmgAopKSgB1FIKWmAlFFJQAUUUUAJSiiloGFLSUUCHZpKKKQC0006kNADTTTS0UwEpaKKAFpaAKXFACUUtFAhKWiikMKKKKBCUUUUwCiiigBc0ZptFAx2aTNJSYoAcDTs0ylFAD80ZpopakApKWjFMYmaM0UUALmkopKBC0UlLQAUUGkFMBaKKM0gDFIaXNJmmISkxS0UDCiig0AITTSaDSYpgLmnCmgU8CkA4UGlFGKQCUtJilxQMKKKKBBRRRQAlLRS0AJiloxRQAlLijFKKADFGKWjNIQ0ikpSabTGLS02loAdRikBpc0gCijNJQAUmKWimAlJmlNIaADNAopaADFLRRmgApCKXNGaAG4oxTs0UAJiilooAbSYp1JQAmKXFLS0AJikxT6Q0ANpKWigBKM0GkpgLmikpQKADFGKXFOxSAZigCn4pMUAFGKKKAEooooEIaKKQUxjqKBS0hCUlLSUAJRRRTGOxRinYoxSuA3FJinYpKAG0ClNApjFFOpBS0hBS0UUhiEU2nUlMBKSnUlAhKWiloAQ0lOxSYoAKKKQ0AGaTNFKKYBS4oApcUgG0lLRTAbijFOxS4oAaBThRigUgHCikFLSAKKKKACkpaSmAUtJRSAWlpmaXNMB1LTM0oNAx2KSlFNNIQE00tQTTCadgHZopBS0wAUtFLikAmaM0uKMUAGaKAKXFABRRRQAlJS0uKAEpaKXFAhKSlooGJSZpcUUAFLSUtAgpcUUYoGJSU6kNACUUUUALQaUUlADaKWigBpoAp2KMUAJinAUYpQKADFJTqaaQC0lFBoAQ0UGimAlJS0lABRRS4oAUUUoFIaBCUUtFADcUYp2KMUAOopuaM0WGKTTaXNNNABQKSlFMY4UtIKWpELSUUlAC0lFFMYUUtFIQlFLSUwFpDRRQAhpDSmkoAQUtFFMB1FApe1IBuKMU7FGKAG4paKKACiiloAAKKWkNIYUUUUAJijFLS0wExTSKkxTSKQiOlpcUlUAU4Ugp1IBaaaWmmgBppMUtLimAgFPxQBS0gDFFLRSASilpKYCilpuaCaADNJmmk0maAH5pc1HmnZoAdmlpuaM0AOpKKTNAC0UlAoAWiiigBaWkpM0gHE0wmlJpppgFLSZooAfRTc0tABRRRQAUUlFADqWm0ZpAOptLmkoAKKKU0wG0UGloASkxTqKQCYpaAKWmAUhopaQDcUuKUCnAUCExRin4oxSuBBRRijFWMKKMUYpAJQKUikpgLS0lFIBaKKWgBtANBpKAHUtNpQaBi0YozSZoEFFGaKADFJTgaSgQmKKXFFAwpaSloAWigUuaAExSYp2aSkAmKWiigYUUUlABS0lLmgQYpcUZozQAtNNOzSGgBmKMUtFMAApcUmaM0gCkxS5ozTAbiilJppNMQuaN1NzSZosA/dRuqPNGaLDJN1JuplFFhDt1IWptJRYY4tRmmUuKdgHg04UwVIKQBS0UUgEzRmikoAKcKbinCgQopcUClpDExSGnU00AIaaaU000wDNGaSimA7NOplOFIB1LSUtIAxSYp2aTNACUUZozTAKKSloAKWkpaAEoooFAC0lLRSAKCaSg0wEpc000CgCQU4VGDTwaQiQCnYpqmn0gK2KMUmaM0x2FxRikzSZpgBpKCaSgBaWgUUAKKWm0tAxDTacaSgBKM0UUxC5pM0UlIBc0uabS0AOpRTc0oNAhaKKKBiUoopaACiikoAXNFIKcKQxKKWkNAhKKQ0hNMB1Jmm5pM0WAfmlzUeaN1FgJc0maj3UbqLAPJpM0zdRmgBxNJmm5ozTsBIDRmmZozRYBxNMJpc0lACZpKdikxTASloxRigBaKKKBBSYpaWgY3FKBS4pQKAACnikApwFSwCg0UhpAIaBQaUUwDFLRSZoAdRmmZpc0gHZpppaQ0ANooopgNNFLilxTAQU8UgFLSAWlpuaM0gFJpM0UGmAmaM0hozQA6lpopwoAWg0lFIAooooAWiiloAbSUtJTASiiimAZpc02jNKwEympc1XU1JupWAiooopjuFNpxptABRRSimIXFFLRSASilpKACjFFLQAmKMU6koAbRS0UANxRinUUANpRSGigB1FJS5oAUGlzTc0ZpALmjNNzQDTAcKcDTKM0gHZpCaaTTSadgFJpuaQmjNMAooopiCkpaKBjaKWkoAWikpwoASkxT8UYoAbRS0uKAEopaSgBaWkopCCkpaSgAooooAKUUlKKYC08U0U4UhjqKSkzSC4pNJmmk0gNAD6KQUtAAaaaWkoASlFFLQAooNFFADcUuKXFOxQAzFLilooASiiigQlJin0mKBgBQRSgUuKAIyKMU/FKBRcYzFOp2KSkISilooASgUtFAgozSUZoAXNIaTNFMApDSUUxhSUtFACrUlMWn0gI80ZpKKBi0YopaAExS0tFIApM0tNNMAzSZpDSZoEOzS5qPNLmiwEmaM1HmlzQA7NLTQaWgBaKM0UAGKMU6kNIBtNJpxpppgGaM02imA7NKDTKcKAHZpM0hNITQAtJRS0AJijFLRTATFFLRSEJijFLRmgYmKTFLRQAmKKWigAopKKYgoopKBi5pKKKAFpaQUtABmkoooAKWgUtIBKKWkpgOFKKQU4VIBmmk0pppoEFIKKKYxwpc0lFIQtFIKWgYoFLigUtADaKWigQCloopDA0maDSUwCiikoAXNFJS0AOFLSCnUhCYpQKKWkMMUmKdTaBCYoxS0maYBikNLmmk0AJmkopKaAWikpaYBRiloxSATFLilxRQMBTqQUZpAR0UUVQC0opKWkAUtFFABTDT6aaAGGm08immmgG5ozRRTAXNGaTFOoAUGnCm04UgDNANFFIB4NIaSlpCA03FOpDTQDcUlOpKYxKKWkoAKSiimAoopKWgAopKKAFJpM0UUAgzRRRSAWikooAWkozSZoAWigGimAUlLRQAlLRijFAhRRRRSADSUUCmMUUtJRSELSUUUDHCnCmilpCHGmGnE000DEopaMUwEop2KMUANpaXFGKAFFLQKKQBRRRQAtGaTNGaQAaSjNJmmAtIaWkxQA2nCgCnAUDFFPpoFOxSEFFFITSAM0maaTSZp2EOzRmmZozTAUmkJopKYwooooEFAopRQA4UuKaKWpGLSUZpM0CFzRmkoxTASiiimMKcKSikAtJRRQAtIaWmmgBppppTRTASkpaKAEpaSlFMBacKbSikA6jFApaQDacKSlFAhaSlooAYaSlNNpjCg0UUCEooopjCloooAbilpcUUAJRS4ooEFFFFACUUUUDEpKdSUgAUtJRTAWlpKWkAUUUhoELSUUUxhRRRQIWkpaSgYUoopaQC0UUhNAC5ozTc0UCH0tNFOpAFLRS0DEopaSgApaSikAUmKdS4pgMxSYqTFJilcYzFGKdilxTENxS4pwFLilcBuKWlxSGgBQaXNMzSbqAH7qYxppamk07AKTSUlLTAKWiigQUUUUAFFFFABS0lLSAUUUlFAC0lLRQACnUgpaQDaKWimMSilppoAM0CkzQDQA6kNGaKAGUUuKMUwGmilNJQAUUtFAAKcKaKcKAFpaSlpAFFFFAC0maM0hNACGm0pNJTAKKKKYCUUUUALRSUtIAooooAKKTNLTEFFFFACUUUUDCkoooATNKKKBQA4UUUUgCiiigBKKWkpgFFFAoAWiilpCEoFFFAC0GiigYmKM0UYoAUU4U0U8UAKKWkFLikAUlOxSYpAIKXFAp1ACYp2KSlzQMDTDTiajJoQhaUUzNLmmA+jNNBoJpALmkzSZpM07ABNJmg0lMApKXFJigAFKKKWgAooooEFFFFABRRRQAUZpKKAFpaSigBaKTNLSAcKdTBT6QDaKZmjNOwxxpDSZozQA0mkBpTQKYxQacKaBTxSEBFNNPNMNAhppop5pKYwooxRQAUopopwoAcKWkFOpAGKQ0uaaTQIQmmE04mmGmMXNLSClxTAWikzRQAUlLSUAFFLRSATNFGKKACiiimAtFIKWkIKSlpDQMSilxRTAAKWiigAooooEFJS0lAwoopKBBS0YpaBhRRRSAKUUlFAhaKKKBhS4pKWgQoFKKbmlBpAPFOpgNKDSAfim0ZpM0DHUUzNG6iwD6Qmm7qQmgAY1GTTjTcVSBBmjNGKWgBc0ZoopAJmilxSUwFooooEFFFFAwooooAKKKKACiilpCEooopgJS0UUALSUtNNIAozSUUxkgp9RrT6kRDRRRVDCloFOAoAbilxTsUYpAIBS0UUABNNJoJpppgLRSUtABSGlooASlFAFOAoABS0lJSAXNNNFLTAbijFPxS7aLgMxRTsU2gBKKKKACiiimIKKKQ0DFzSUUUAFFLRQAlFLSUAFFFIaAFoptLQA6ikpaBBRRRQAUlLQaAENJS0CgAp1IKWkAlFFJQAtFJRQMWlpKKAFpabS0ALRQKWgAozSUUAOzSZpuaM0hC5pM0UUwCiiigBaKSigYtFFFAC4pKWkNIAooopgFLSUtAgpKWkoAKKKKACikpaBhRRRQIKKKKACiiigApDS0UANopTSUDQ4U/NRilzSsDDFGKWigAApRSUuaAFopM0ZoAKbQTRQAlIRTqTFMBKWjFFABS4oFOFACYpaWkpAFJS0UANxTgKKcKADFLiilzSAYRTDTzTTTENpKWimMSilooEJRS0YpgNopaKBhSUtJSAWiiigAxSYpaKAG4opaKYBRRRQIXNGaSigYtFJRQAUClooEApaSlpAJRS0UxiYopaKQCUtFAoAMUuKKM0AFLSUUAFJRmkoELRSZpaBhSikpaBC4pKWgmgBKKKKBi0UmaM0hC0lGaTNMYtFJmjNAC0UlGaBC0lJmigYtLSUtACUUUmaAFopKWgAooooELRRmjNABRSZozQAUuKTNLmgYlFBNJQIdRRRQMM0maU0lABmjNFFABQKKBQIWloopDDFJS0lABRRRTELmikzRQMWlptLSAdS0lFAh1JmkJppNAxSaaaM0maBBRSUUxi0UgpwoASilpKBBSUtIaAEpM06m0xhmlpKKAHZpKKKACiiloASilooAKKKKBCUUtFAwooo7UgCiiimIWiiigBKWikpALRRRQMKTNFFABmlzSUUAJmjNJRTAWlpopwoAWlpKKADNGabRmkIdRTc0ZoAdRmm5ozQMWkzRRTATNLmjFLigAoooNIBCaBRRQA6im5ozQApNJSE0UwHClpBRmkAtFJmkoAXNGaSigAzSZopKYDs0ZpKWgBc0UUlAh1FFFIYUUUUAFFFFABSiilFABRQaaaQC5opuaWmAtFFLigBtLRiloATFLS0UgCjNFNNAhSaaTSZopgFFFFAwooooABTqQUtABSUpppoELSZpCaTNMBaKSloASilpKBhS0lKKAFooooEFJRRQAtFJRQMWiiigAooopCCiiimMKWgUmaAFpKKKBC0UUUhhRS0lACUlBpKYBRinYoxSATFLRRQAUGkopiEpcUUooATFGKdilxSuMjxRin4pMUAJilxTgKMUCG4paKKACg0tBpAMopTSUwEooopjEpRRQKAHCgigUtIBuKMU7FOAoAZijFSbaTbQBHijFPxRigBmKXFPxRigBlFKaSgQ6ilooGJRS0UANopaKAFoozSZoAU000pNNJoAKBSUUAPFFNzS0ALmjNJRQAuaM02ikA7NNJopKYBRRS0wCiilxSAbRRiimAoNLmm0tIAJppNKabTAM0UYoxQAtKKTFLQAUYpRRQAmKUUUUAFJRSUAGaM0UUAFLSUooAWiiikAUlBopgFLSUUgFooopgFFLRQIKKKKQxaSjNIaACgClpQKAACjFOAoxSAZSU8im4piEoxS4oxQAlLRRQAtLSUtIBKAKWimAopDS0lIBKKXFGKYwxSGlpKAENJilpQKAExRtp1FIQzFAFPoAoGJijFOooASlFJRmgB1FJmjNAgoozSZoAU00mgmkJpgBpKKSmMlopaKkQlFFLQMaaSnGm0AFIaWmE0xBmjNNzRmmMWiiigBc0uaSgUgFooooAKKKSmAtFJS0AFFFFIBaXFAp2KQDCKSnkU00wG0UtJTAKTFLS0AJilxRS0gExSYpaKYBRS0UgEopaKYDaKWkoAKXFFFACUUtJQAtFFFAhKKWjFAxKKXFFABS0UUAFFJQDQAtFFFIQlFLijFAxRT8U0CnUhBRSZozQAuKTFGaXNACYpKWigBppKU0UAJSigCnAUAJS07FGKBjaKXFJQIAKcBSCloGIaZTjTaAClFJQKYC0UUtIQhpaKSgYtIaM0UANopcUlMBc0ZoooATNGaDSUAJmjNFLimAlFLRSAkzRmm0UWEOzRmm5ozSGOzTSaM0maYATTGpxNNNMBtLRilxQAgp1JS0AFLSUtIAooooAKSiimAUUUtIAooooAetPpi1JSGMIppqQimEUwGUYpaXFAhtLilxS4oAbRS0UAJRRS0AJiilooEJRS0lABSUUUDCiiigApKWkpiFoopaACiikoGFAopaBBSGikpDQUUUUwFpRTacKQC0uaSkoAdmjNNzRmiwDs0U2nCgQUtFLSAKMUtFIBmKMU7FFMBAKeKaKcKQC0hpaQ0ANNJQTTc0wHZpaZmnUDA02lNJimAUYpaUCkISlpaSgYUmaDTaYC0UlLQAtJRRQAUtJS0AJSEUtGKAG4paXFFACUUUUAJmjNFFMQuaKSigBaSiigYlGKWigBMUUtFACUUtFABRRRSAKSiimAUUUtABRRRSAKKKSgB6mpAaiFSA0MY6mkU4GkJpAR4ooJozTEJmjNITSZoAdmjNNzRmgQ7NGabmigY7NLTaUUALRSikoAbijFLS4oGJRS4oxQIbRinYoxQAlFLikoEJRS4pKYwoopMUALSUUuKQCUtGKKYCUopMUuKAFzRSYpaQCYpcUYpaAG04UmKWgQ6jNNozSAeDS0wGnZpAFJS0hFAADTgaZS0wHZpCaSkoADRRRTASnCkooAKKKKQBS0YpKAFzTc0UlAC0lLijFMYlFLSUAFLSUtABRRRQAUtJS5oEFGKKKQCYoxTqWgCKiiiqAKKKKQwooopgLRSUtIBKKWigBKKKKYBRSUUCFpKWkoGFLSUUALRRRQISiiigY4U4UylBpASg0xjS5pppDG5ozRSVQhCaSloxQAmaM0YooAM0opKUUAOFOFMpc0gHUU3NGaAHUtMBp2aAHUU3NGaQDsUlJmjNMBaMUmaM0CDFJS0lABRiikoGFLSUtABRRRQAUUUUALijFJS0CFxRRmikAYopaSgBKSlpDTGGacDSUCgB9FIKWpEGKSlpKAA0lBopgLRRRQAUlLRigYCloooASkpaKBDaXFLiigYAUpFAoNAhpptPpMUDG0tFJTELRRRQAUmaKSgBc04U0U4UgHClpKdSAgoooqxhS0lLSAKSlpKYCUopKcKAFpKWikAlBFLQaBDKKU0UwCiiigBKKKKBhRRRQAUUUUAFKKSlFIBwopRRQMaRSU8immgQ2ilpKYBSUtFACUUUUAKKKKKACkpaKAClFNpaAFopKKQC0UlFACg0uabS5oAXNGaSigApKWg0AFFJS0wDNGaSkzQMfmkpKKBC0tJRSAWlzTaWgB2aKSigQUUUUDClpKWkAtFJRmgQtFFFABRRRQAUUUUAKKKSloGFFFJQAUUopKBC0lFFAC5ozTc0tABSUtJQMSkpaSgQUtNzRmmAUYop4FAxoFSAUAUtIAozSGm5osIZRS0VQxBS0UUgCjFLRQAmKWiigAopaQ0AJmiikoAKKKKYBRRRQAlFLRQAlFLRQAlGKWikAUCigUAPFOApop4NIBCKjNSk1G1NAxtFFFMBKKWigQlFLRQMSiiikAUUUUwCilpKBBRRS0DEooopAFFFFACinYpBT6BDcUmKdRQA3FGKdSUANxRinUUDExRinUhoATFGKWigBMUuKKWgBKKKKACjFLRSEFFLRQMSiiigQtFJS0AFJRSUALRSUtMBaWkozSAQmkzQTTaYD80UgNGaQC5opuaXNMBaKTNGaAFpKM0ZoAKKKKAEooNFACgU8CkBp4NJgGKQ04mmE0kA0mm5oJplUA+ilooGJRS0YoAKMUtFABS4pKKAFphpxNNNACUlLSUAFLSUUwFopM0UgFopKKYC0UlLQAUlLijFABRS4ooEKKcDTKXNSMcTTDS5pDTASiloxQAlFLRQAlFLijFACUlOxSUAJS0UUAFJS0UwEopcUYoEJRS0uKQCUlOxRimACndqaKUmpAKKTNLmmMWiiigQlFFFAC0hpaKAEpKWkoAWim5paAFooooAWlpKM0gFpKDSUwClpuaM0AOopuaM0AKTSZoozQAtGaTNGaAFzSZozSZpABNJRSUxi5pc02lpiFzRmkooGLmlzTaM0CFzRmkzRmkA4U6mA0uaAFNNoJpM0APBpwNR5pwNADyajJpxNMNACE0lLijFMB9FLRSGIKdSU4UAJSUpooASkpaKAEpMUtFACYoxS0UwG4pMU6ikA2ilooATFGKdRQAlLRiigAooooAKKSigQUtFKBQMSlpaTFACUUtFACUtFFABRS0lIApKKKYBRRRigQYopaKYxKKKKQgopKWgYtFJRQAGkpTSUCEpwpKWgYtFFFIAzSUUUxDqKSigANNpTSGgYUtIKWgBaM0lITQIXNLmo80uaB2HZopuaWgAoopM0xC0UlLmkAUUUZoGFFJRQAtJRRTEJRRS0AJS0UUAFFFJQMKKKKBCUtFAoGLS0lFABSUtAoAUUopKcKQAabT6SgBKWgClxQIKKSigYtLTc0tAC0UmaM0CCikzRQAUUUUDCjNBpKACiiigAopaKACjFFLQAlJSmkNACUmaWkxQAZpaTFKBQAop1IKWgQUUtFAxKKKKACikzS5oAKKKKQhDSUtJTAWiiloAKSlooASkpaDQA00tFFABRRRQMQ0UUUALiikpaACiiigApKKKYhaM0lFAC5ptFFAxaWkopAGaQ0GkNACU4CkAp1ABiiiigApKKKYBRRRSAKKKKBBRRRQAUUlFMYtFJS0AFFFFAgpKWkoGFFFLQAlLRRQAUUUUAFFFFACinCm08UgFptONNNIQCnU2loASim5ozTGOopuaXNAC5pM0UUCCiigUDFpKWigApKWigBKWiigAooooAKKKKBBSUtJQMKMUUtMBMUuKKKQC0UCloEJRRRmgYUlFJQAUUUUALmikFOoEIaSnYpMUDEpaKKAFopKKACkoooAKWkpaBBTTTqQ0DENIKWkFAC0tJSigAopaSgBKKWkpgFFFJQIWikooAWikopALRRRTASlpKM0hi0UmaM0AFJRRimAUUUUAFFFFAC0UUUCEopaMUDEpaKKACijNFABRRRQAlLRRQAUUZopAFFFFABSikopgLTxTKeKQCmmGnmmmkAlLRijFMRHmjNJRVDFzS5ptFIB+aXNR5pQaAH0CkFKKQhaKKKBhRRRQAUtFFAgooooAKSlooASilooASiiigYUUhpaBDhRSUtIBKSnUlMYlFLRQA3FGKWigApaSigBaKSigAooooAKKSigAooooAKWkpRQIKbSmmmgBaKSimAtLSUtIYtJRRQAUlFJQAUUUUwCiiigQUUUUhgKWiigBKKKKAA0lLSUwClpKKACiiigQUtFFAwooopAFLSUZoADSUppKYBS0UUALRSUtACUUtJQISlFFFAwooopAFFFFACinimU8UALSYp1FIQmKKWigCvijFOoqhjcUYp1FADaUUuKAKAHCiiikAtJRRQAtFFFAhRS0lLmkAUlGaTNAC0UlLTAKDRSGgYmaTNFJQA6ikFLQA6ikooEOpKKSgYtFJRQAtJRSGgAoopKAFoFJS0ALSGlpKBBRmkooAKKM0lAC5ozSUlAxxNNJopKYC0UlLQAtLTaWgBaKSikAtJRRTAKKWigAooooEFJS0UDCiiikAlFFFMAopRRQAlFLSUAJS0UUCCiiikMKKKKACiiimAhopaKACilxSUCCiiikMWkoopgFFFJQAtFFFABRRSikIKcKbThQA7NGaSkpAOzRmm5pKAEopaKYxKKKKYBiloopAFFLRQAlFFFAhaKKKYC0lFIaQC0UlFAxaWgUUCCmmnUmKBjKdRilxQAlLRRQIKKKKACkpaSgYUtJS0AFJS0lABRSZozQAtFNzRmgB1ITSZopiDNJmiigYZpaSloAKSlpKACkpaKACiiloASloooEFJS0lAxaKKBQIWiiikMKKKKYgpKWkpDCiiigAooooAWigUUwCkpaQ0gCikopgLS0CjFAgpKWigYlFFFABS0lLQIKKKKACkpaKAEopaSgYlFLiigAoooxSAKWiimAU4U2ngUgCkp+KMUgI6KcRSYpgJRS0UAJSYp1FACYpaXFFABiiiigBKSlpKAClpKWmAUlLSUgEp1JS0AKKKKKBBRRRQMKM0U2gBc0UlFAhaKSloAKTFOooGJRRSGgQZpKQmkzQMUmkoopgJS0lLQAUtJS0CCiiigYUUUUAFFFFACUUUUAFLSUtABRRRQIKKSloGKKKBS0gEopaSgAooopiCiiigBKKKKQBRRRQMWiiigQUGikNAxKKKKYDhTqaKdSExKSlpKYBSUtFIYlFLRQAUtJS0xCUUtJikMKKKKYgooopDCjFKKXFACYop2KQ0AJT1qPvUqUMB9JTqaakBppKU02mISiiimAUUUUDQopabS0AFFFFABTTTqSgBKWiigAooooAKKTNLQAUtFFABRRSGkAUlLRimAlFLRQIKOlLSGgYZoopM0ABNJmgmm0AFFFKKYCYoxTqKAG4pcUUUAFFFFIAopaKYCUUUUgCiiimAUYoooAKKWikAlFLRTATFLRS0gCiiigApKdikxQAlFGKWgQhpM0pptMYtFFFABRRRQAZpaSigBaSlooATFFFFACilpKKAFpKWkpCEpc0lFMYtKKSlFIBcUYpwpKAEoxSmkoGJSUtFAgopcUYoABTqTFOFACGmmnUlAxuKkWmU9aQh5ppNKaaRQgGk03NKabTEOopaKACkxS0UhiUuaQ0maYC0optKKAFoNFJSAKKKKYBSUtJQAlLRiigApaSigB1IaKKAClpKKBC0lGaTNADqQ0ZpDQAhpCaWjFMBtFLiigYlLS4paAEopaaaQBRRRTAKKKKAFooooEJRRSUhi0UlLTAKKKKAFopKKQC0UlFMBacKbTgaQC4oxRS0gExRiloxQA3FFOxSUwGmm0/FGKAG4oxTsUYouAyin4oxQAylpcUYoASilxRQA2iloxTEJS0mKUUDFpKWikISilpKBhSikpRQA4UUgoNAwpKWjFACUtJiloELSgUClApDDFFLikNACGkpTTTQAU9ajqRaBD6QinYpDSAiao6lYVHiqQD6KSigBaKSloAaaSlNIKAFpRQKWgApKWkpAFFFFMAopaMUCExSUuKWmAlFLRSGJSUtIaACjNJSZoAWjNNJozQA/NBNNBozTAWlpop1IApKWigApaKKAENNNONMNAC0UlLQAUUUUwFooooEIaSlNJQMKWiigAooooAKKKKACiiigBRSigUopAKKWkozSELmjNNzSZoAeTTc03NGadhj80uaYDS5oAWlpKWkIKKKKYBRRRSAQikNOpppgNooooGFFFFAC0UUtACU0080w0AFKKKWgBRRSUhNADs0mabS0AOopKWgBwpwqPNOBpDHk000E00mgANIaKKYCVIlRd6lSkxEvakNL2ppNIBjVHUjUymAUUUUwAUtFFACGkpTRQMUUYpRRSEJRS0UANopaSmIKKKKBi5opKKAFpKKKACg0UUANpDTjTTTENNFBooGLRSUUAOFLTaWgQtGaSikAuaM0lFAwJppNKabTAcKWminUAFFFFAC0UUUCA0lLSUDCiiigAooooAKKKKAClpKUUALRmikpALmkzSGm07AOzSZpKKAFzRSUUCHZpc0lFAx2aM02ikA/NJuplFAEmaXNMFOoELmkJopDQAlFFFAwxS0UtABS0UtAhDTSKdRQA2jFLRQMSkNOppoASlApKcKYMKWikpALQDSUUAOJpuaKKAClNJRQAVIlR1ItAEnammnU01IxjUynNTKpCP/Z",
            "text/plain": [
              "<IPython.core.display.Image object>"
            ]
          },
          "metadata": {
            "image/png": {
              "width": 200
            }
          },
          "output_type": "display_data"
        }
      ],
      "source": [
        "display(Image('forest.png', width=200))"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "mO83ZbVbaujN"
      },
      "source": [
        "Next, prompt Gemini to classify this image."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 35,
      "metadata": {
        "id": "-__0F40eaz8g"
      },
      "outputs": [],
      "source": [
        "prompt = \"\"\"\n",
        "Classify this image as one of the following categories:\n",
        "AnnualCrop, Forest, HerbaceousVegetation, Highway, Industrial, Pasture, PermanentCrop, Residential, River, SeaLake.\n",
        "\"\"\""
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 36,
      "metadata": {
        "id": "3yk_E-rycOGh"
      },
      "outputs": [
        {
          "data": {
            "text/markdown": [
              "Based on the visual information provided, the image is best classified as **SeaLake**.\n",
              "\n",
              "**Reasoning:**\n",
              "\n",
              "The image displays a large, uniform area of a dark, muted blue-green color. This appearance is highly characteristic of a large body of water like a sea or a lake, especially when viewed from an aerial or satellite perspective. The subtle texture and color variations are consistent with the surface of water. None of the other categories, such as Forest, Residential, or AnnualCrop, would typically present as such a vast, homogenous blue-toned expanse."
            ],
            "text/plain": [
              "<IPython.core.display.Markdown object>"
            ]
          },
          "execution_count": 36,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "from google.genai import types\n",
        "\n",
        "with open('forest.png', 'rb') as f:\n",
        "  image_bytes = f.read()\n",
        "\n",
        "response = client.models.generate_content(\n",
        "    model=MODEL_ID,\n",
        "    contents=[\n",
        "        types.Part.from_bytes(\n",
        "        data=image_bytes,\n",
        "        mime_type='image/png',\n",
        "        ),\n",
        "        prompt\n",
        "        ]\n",
        "    )\n",
        "\n",
        "Markdown(response.text)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "HUcN38n3cQ6w"
      },
      "source": [
        "Gemini incorrectly predicts that this image is a `SeaLake`, reasoning about the blue/green areas. The model is missing the critical multi-spectral data needed to make an accurate prediction."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "7uInBJSvcYRj"
      },
      "source": [
        "## Remote sensing with multi-spectral images\n",
        "\n",
        "To perform zero shot multi-spectral remote sensing with Gemini you need to:\n",
        "\n",
        "1. Transform multi-spectral inputs to psudo image space.\n",
        "2. Create a prompt which scientifically describes what the new inputs represent.\n",
        "\n",
        "To see this process in action, you'll add five additional images to the prompt. These images include information about Sentinel 2's other spectral bands.\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "mL83MTp2ciOG"
      },
      "source": [
        "### Download images\n",
        "\n",
        "Download the images from a public Cloud Storage bucket for viewing."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 62,
      "metadata": {
        "id": "ztJiXY1JEtjs"
      },
      "outputs": [],
      "source": [
        "!wget -q https://storage.googleapis.com/generativeai-downloads/gemini-cookbook/images/remote-sensing/forest_0.jpeg -O forest_0.jpeg\n",
        "!wget -q https://storage.googleapis.com/generativeai-downloads/gemini-cookbook/images/remote-sensing/forest_1.jpeg -O forest_1.jpeg\n",
        "!wget -q https://storage.googleapis.com/generativeai-downloads/gemini-cookbook/images/remote-sensing/forest_2.jpeg -O forest_2.jpeg\n",
        "!wget -q https://storage.googleapis.com/generativeai-downloads/gemini-cookbook/images/remote-sensing/forest_3.jpeg -O forest_3.jpeg\n",
        "!wget -q https://storage.googleapis.com/generativeai-downloads/gemini-cookbook/images/remote-sensing/forest_4.jpeg -O forest_4.jpeg\n",
        "!wget -q https://storage.googleapis.com/generativeai-downloads/gemini-cookbook/images/remote-sensing/forest_5.jpeg -O forest_5.jpeg"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Fvo8YMA2cRa9"
      },
      "source": [
        "image_0 is the RGB image from the previous section."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 63,
      "metadata": {
        "id": "aanKVuF0ZIXW"
      },
      "outputs": [
        {
          "data": {
            "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCABAAEADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDiO/SjFGOfSjIrpOUOgwBSUpPXim4wff3oAU80d80YHWgcn2oAXoKaetOI7UhAxzQAuevSkIP/AOqgkgZ70A8Z6UAKFOTmg8DpTCxNJ1p2AkBA4BGaCOCc8UxePrUmOOeaQCY9+KApJwOtLwOvX2pM5P8AKgBvY/zpeMc005brSDg0wA0UrcN04o4NAAOKXcTwcmkHX/61PBoAbkjtRz1xTvxpMZPP50AJkEYoIxS4pCcDmgBSBTTgUhPvxSUAOzSEmlwMdcGjGO4NADacvOaMdc08ADOPSgD/2Q==",
            "text/plain": [
              "<IPython.core.display.Image object>"
            ]
          },
          "metadata": {
            "image/jpeg": {
              "width": 200
            }
          },
          "output_type": "display_data"
        }
      ],
      "source": [
        "display(Image('forest_0.jpeg', width=200))"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "03tA2LVqZQPq"
      },
      "source": [
        "Images 1-5 represent combinations of different spectral bands. You can see that these band combinations reveal new features that were not visible in the RGB image."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 65,
      "metadata": {
        "id": "FllkA20EcQ3V"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "multi-spectral images\n"
          ]
        },
        {
          "data": {
            "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCABAAEADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDndvfac+meaME8njb0I7UmNzgjaAO+aXKM3BHFc59juJgIoABJPbNI2GbqOvakdipJ2844we9NVQrdPn9Cegpkt62HMAxJzkDuKmjB2lwRz1NRsgUlu/TgU5W3DHTB5qXqjSHuyuxoBToSMnPAzT2POM49B60EYPbPqaGCBQX554x3oZUVZNDASpbOzp1xSMpZcY25PVaSRmjj3dWHYmhHJjaQAKcfhT8zFNX5R8cTqWY8k8dKVhtHKHr34qs9xI3cgegOKiyWPUn1yc0+V9SXUitIl0NGvyqy7s8AHNL8qqW3ELUEBC9AATwCR0qz5WQdy5x2zxSehrC8ldCBCR9847EdacsZIxgA9qVFRCN+d3YKc4p0gSVeg4xjBqWzaMNLlM/xAgj1Y85qTZCqEPnHZQepqGQPMF39uajBwQauxycyi9hHwCOeT270AjkZ6/pTmJV+EAHuaUBSehBPtVGKV3oOjO05HYZxVjzmYbWjdj6VAqlWy25QPVauLIzgfLnHc1EjsoXta9iB5XT/AJZnvwOcU5mkK5CcDncTinlWLEEjdimCNGwrjgcs3pU6Gj5rvUYsyzqVUYHvxSGEKOcA56mmRYRx8v41I7hE3NwAeo5qmrPQwjJSjee4m1VJ4BHrTHaNc4wCB+tQyy7s7XAX2PJqPA781aj3MZVktIosSTErtB3DiomlkxjcTRsUIpLgM3aneUexDYPanoiG5yZGSxOSefrUkJJyCcjHc0Mm0kEHJPYVJGFG/bjhc5oewopqWp//2Q==",
            "text/plain": [
              "<IPython.core.display.Image object>"
            ]
          },
          "metadata": {
            "image/jpeg": {
              "width": 200
            }
          },
          "output_type": "display_data"
        },
        {
          "data": {
            "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCABAAEADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD0pS2/BkGF744FPVEYHDY39c9Djpg1IR5SMp3sTzyv8qi2yxou5SoI7jB/KvlTn2HbnkZmZgMDqfSkjbyARhiMEnIqeILMuN4KhuhHQUkjmRTlh5ecAhcZNMduoyN9qKnAJwAH6Vn3rRm5jjYMcdAPWriS+aVTkgc5Y455/wAagMYFxuHzLgdqERLVFiRldPmC4xjJJGBVFF53bC3XJ9uas/fTbltp7CoMyM7CL5cDnd/jQKWpoFknVR+8ABOeaYkgglAJ3gDhZBmpogs0+P8AVo46qB1qOaNVnjhO6RQcZ78jNBo+4ySeN1VcbFHJO7jJpFKsceaC3UYyf8mrKWsW1dygkdCy5/Cp/uR42qv93aAOfWgfK3uZ5SRj5m2XZt+ZsYGfSmury/uwoLAdamuFYgneWC8sAeoqslwQqlWAGOSRzQQ7J2YrNhs+Wue6npVeVQJV2nIJ5FSXMzFD5bKeBncME1Vs7iW3uVO4nB7jpTSM5NXsbG7cqEFSRkqq8YPrVYXNy0ivEBux98joKsW7Q20j+X1Ixg5NTgqGHHGeaRta/UdFvcMdpCAfexgZ9KR0ctuwcKOo705ljLMrSvwSV2qMVDIwA3B8gDnkimWyKdd4KsBljgnGeazmgwzFblAgPXmtF3WRNkQSRjnOH596y2gjhZmaQLnPFJGFQmgtY5iSJxzjBbjNMSOFJfmkO45HlhSc0qyxpFEwyUBx70/zp97ywnluEUnJP0pk6E0tpJp8iyP1OfmU5/WgXjvkgsVA6Dj88Vevo2ntWIbhecHvVCCAzP5aLl2UABvlx/jSe+ho04u0R7SyyqhLkMQODwKWKK5crkM4Y9fatC2s9gXzYi0gGPmHC1aGcYGAOlUo9zRU29WZltaBJPMkTY3OBnr/AJ5qylpblt3loMjPr+NSLK7SuPKbYmMsBwRUTXSZOdyblPLDHFGiGlFEyRoqbAoC9cY4qG5jQAMFCkZ+6Pwp8DrKqkOpAHc0syDau45JJzg9B7UdCnqj/9k=",
            "text/plain": [
              "<IPython.core.display.Image object>"
            ]
          },
          "metadata": {
            "image/jpeg": {
              "width": 200
            }
          },
          "output_type": "display_data"
        },
        {
          "data": {
            "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCABAAEADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDi6KKK+ZP3EKMUU9m3KB6UiW2mkkMpynANNpxGFHvQErPRjaeqbhTKchYHA70Mmpfl90bSggHkZp0UfmSBM4z3olj8qQpnNF1ewnVhz+yvra/yEdg2MDAFNrQh08NguetW0s4Y8HaM1k60VoeJX4gweH9yN5NGLggZwaStDUkwVKjCis+tIS5lc9TA4tYugqyVr9ApwbB6UiqWPApXQp1p6HQ5Qb5G9RUVsgryaCJHbJBJ+lakP2eCTjBzVq4hRrYlAATzWDrWex8vW4jjSrxTpO0tE3oQ27FkUnsKlwWOe1QWsW6Dl+aVt8S8txWLSvofPV6cJYicabV72tb8hl4hZBnpVNYIxyWqa6uRJHtXrWfkj1renF8tj6nKcLX+rckpcuuxdVYwfvYFNYRsTzmqnPvT8lcYGCavl8z0PqTi7qbuS+S8T5Y5qRrlyMZ4qu0zE8mnqPNYKvWk11kZ1aF0p4lJ269ERrNJn5SasR/aJRg5IqWC38p8OuavrIqKQAKidRLZHk5jmtOD5cPSUn3KMFn8xL1bjtYTnIFZ8l7L5zYHAPSnpqHByMVMo1HqYY3BZpWXPzbpbPY0hFADjYKz9SVEZSgANQzXrMQUJFVnkeQ5c5qqdKSd2zfKckxNGtGvVm7dU7n/2Q==",
            "text/plain": [
              "<IPython.core.display.Image object>"
            ]
          },
          "metadata": {
            "image/jpeg": {
              "width": 200
            }
          },
          "output_type": "display_data"
        }
      ],
      "source": [
        "print('multi-spectral images')\n",
        "display(Image('forest_1.jpeg', width=200))\n",
        "display(Image('forest_2.jpeg', width=200))\n",
        "display(Image('forest_4.jpeg', width=200))"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "3PbO5dq_ceFT"
      },
      "source": [
        "### Create multi-spectral prompt\n",
        "\n",
        "In addition to the multi-spectral images, you'll provide Gemini with domain specific information about how each of these new images was created."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 40,
      "metadata": {
        "id": "T--7lQsPd-iW"
      },
      "outputs": [],
      "source": [
        "multispectral_prompt = \"\"\"\n",
        "Instructions: Answer the question asked after the given 6 images of the same scene.\n",
        "The images are generated by selecting different bands of the Sentinel-2 satellite.\n",
        "The band information is as follows:\n",
        "1. B02: Blue band at 10-meter resolution\n",
        "2. B03: Green band at 10-meter resolution\n",
        "3. B04: Red band at 10-meter resolution\n",
        "4. B05: Red edge band (Central wavelength of 704.1 nm) at 20-meter resolution\n",
        "5. B06: Red edge band (Central wavelength of 740.5 nm) at 20-meter resolution\n",
        "6. B07: Red edge band (Central wavelength of 782.8 nm) at 20-meter resolution\n",
        "7. B08: NIR band at 10-meter resolution\n",
        "8. B8A: Narrow NIR band at 20-meter resolution\n",
        "9. B01: Costal Aerosol band at 60-meter resolution\n",
        "10. B09: Water vapor band at 60-meter resolution\n",
        "11. B11: SWIR band (Central wavelength 1613.7 nm) at 20-meter resolution\n",
        "12. B12: SWIR band (Central wavelength 2202.4 nm) at 20-meter resolution.\n",
        "The first image is the RGB image generated using B04, B03 and B02 bands.\n",
        "The second image is the False Color Composite image generated using B08, B04 and B03 bands.\n",
        "The third image is the NDVI image which is a colormap with values Red, Yellow and Green\n",
        "generated using B08 and B04 bands.\n",
        "The fourth image is NDWI image whose values are in the range of -0.8 to 0.8 and using\n",
        "a color map varying linearly as [(1, 1, 1), (1, 1, 1), (0, 0, 1)].\n",
        "The fifth and sixth images are the NDMI images generated using B8A and B11 or B12 bands\n",
        "with the colormap varying linearly as [(1, 0, 0), (0, 1, 0), (0, 0, 1)].\n",
        "Output format: Output the option numbers corresponding to the correct answer in the format\n",
        "\"(X)\" where X is the correct number choice. In case of multiple correct\n",
        "answers, output the answer choices in the same format separated by commas. For example,\n",
        "if the correct answers are choices 1 and 3, output \"(1),(3)\". Only output the option\n",
        "numbers in the above format and DO NOT OUTPUT the full answer text or any other extra words.\n",
        "Question: To which of the following classes do the given images belong to? Select all that apply. Possible answer choices:\n",
        "(1) AnnualCrop, (2) Forest, (3) HerbaceousVegetation, (4) Highway, (5) Industrial, (6) Pasture, (7) PermanentCrop, (8) Residential, (9) River, (10) SeaLake.\n",
        "\"\"\"\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Ixg52juSBBeT"
      },
      "source": [
        "Upload the images with the [Files API](https://ai.google.dev/gemini-api/docs/files) so they can be processed by Gemini."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 42,
      "metadata": {
        "id": "gsnx9bOUA_-I"
      },
      "outputs": [],
      "source": [
        "image_0 = client.files.upload(file=\"forest_0.jpeg\")\n",
        "image_1 = client.files.upload(file=\"forest_1.jpeg\")\n",
        "image_2 = client.files.upload(file=\"forest_2.jpeg\")\n",
        "image_3 = client.files.upload(file=\"forest_3.jpeg\")\n",
        "image_4 = client.files.upload(file=\"forest_4.jpeg\")\n",
        "image_5 = client.files.upload(file=\"forest_5.jpeg\")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 46,
      "metadata": {
        "id": "GSkQT1aDFeLG"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "(2)\n"
          ]
        }
      ],
      "source": [
        "response = client.models.generate_content(\n",
        "    model=MODEL_ID,\n",
        "    contents=[image_0, image_1, image_2, image_3, image_4, image_5, multispectral_prompt])\n",
        "\n",
        "print(response.text)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "BoV6SgadGZgw"
      },
      "source": [
        "The model responds with (2), which corresponded to \"Forest\" in our prompt.\n",
        "\n",
        "Equipped with the multi-spectral information, Gemini correctly classifies the image."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "iszQW7F3co_m"
      },
      "source": [
        "## Creating multi-spectral composite images\n",
        "\n",
        "In the previous section you saw that adding multi-spectral data to your prompt can help Gemini to correctly classify satellite images.\n",
        "\n",
        "In this section you'll learn how to create these multi-spectral images, and how you can create your own images based on the bands relevant to your domain, in two steps:\n",
        "\n",
        "1. Select three spectral bands that are important for your specific problem.\n",
        "\n",
        "2. Scale the data from each band to a standard 0-255 integer range and assign them to Red, Green and Blue channels of a new image."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "V1B0vE9XwmZH"
      },
      "source": [
        "First, download the multi-spectral data for the forest image."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 51,
      "metadata": {
        "id": "So3w4tjzHX97"
      },
      "outputs": [],
      "source": [
        "!wget -q https://storage.googleapis.com/generativeai-downloads/gemini-cookbook/images/remote-sensing/download_fo_multi_spectral_bands.npy -O download_fo_multi_spectral_bands.npy"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 52,
      "metadata": {
        "id": "rxvNftNre-Pw"
      },
      "outputs": [],
      "source": [
        "import numpy as np\n",
        "s2_image = np.load('download_fo_multi_spectral_bands.npy')"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 53,
      "metadata": {
        "id": "GaQ9VHG-cveJ"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "(64, 64, 13)\n"
          ]
        }
      ],
      "source": [
        "print(s2_image.shape)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "d_uCN-13wxV-"
      },
      "source": [
        "This forest satellite image is represented as a numpy array with shape (64,64,13), meaning there are 13 different spectral bands captured by the satellite. R, G, and B are 3 of these 13 bands. Each band is represented by a 64x64 matrix.\n",
        "\n",
        "If you wanted to recreate the RGB image you plotted earlier, you would stack the RGB channels and end up with an array of size 64x64x3."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "gn1MAPgUmxwi"
      },
      "source": [
        "### Example multi-spectral image: NDVI"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "NYgz3HQTwwcn"
      },
      "source": [
        "You are going to recreate image_2 which represents the Normalized Difference Vegetation Index (NDVI).\n",
        "\n",
        "NDVI is a commonly used metric in remote sensing to quantify the amount, density, and health of vegetation in a given area. It works by measuring the unique way plants interact with specific wavelengths of light.\n",
        "\n",
        "To calculate NDVI, you use the Red Light (Red) and Near-Infrared Light (NIR) bands. The formula is:\n",
        "\n",
        "`(nir_band - red_band) / (nir_band + red_band)`"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "ikpMn5sHniIk"
      },
      "source": [
        "To do this calculation, you need to know the mapping of band names to indices in the numpy array. Then you can extract the Red and NIR bands. To see a full description of Sentinel band names and attributes refer to the [Sentinel 2 Earth Engine docs.](https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_HARMONIZED#bands)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 54,
      "metadata": {
        "id": "fW13YWEbDKYd"
      },
      "outputs": [],
      "source": [
        "band_name_to_index={\n",
        "        \"B01\": 0,\n",
        "        \"B02\": 1,\n",
        "        \"B03\": 2,\n",
        "        \"B04\": 3,\n",
        "        \"B05\": 4,\n",
        "        \"B06\": 5,\n",
        "        \"B07\": 6,\n",
        "        \"B08\": 7,\n",
        "        \"B8A\": 8,\n",
        "        \"B09\": 9,\n",
        "        \"B10\": 10,\n",
        "        \"B11\": 11,\n",
        "        \"B12\": 12,\n",
        "    }\n",
        "\n",
        "red_band = s2_image[:, :, band_name_to_index['B04']]\n",
        "nir_band = s2_image[:, :, band_name_to_index['B08']]"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "WFsa3Uy_diil"
      },
      "source": [
        "You can see that the Red and NIR bands are shape (64x64)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 55,
      "metadata": {
        "id": "Ozf7-sQ3dh_q"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "(64, 64)\n",
            "(64, 64)\n"
          ]
        }
      ],
      "source": [
        "print(red_band.shape)\n",
        "print(nir_band.shape)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "XLYp-9bSFLrv"
      },
      "source": [
        "The function below takes in the Red and NIR bands and calculates NDVI."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 56,
      "metadata": {
        "id": "zkFoiy0mH7Na"
      },
      "outputs": [],
      "source": [
        "import matplotlib.pyplot as plt\n",
        "\n",
        "def generate_ndvi_image(\n",
        "    red_band: np.ndarray, nir_band: np.ndarray\n",
        ") -> np.ndarray:\n",
        "  \"\"\"Generate an NDVI image from red and nir bands.\"\"\"\n",
        "\n",
        "  # calculate ndvi\n",
        "  ndvi_image = (nir_band - red_band) / (nir_band + red_band)\n",
        "\n",
        "  # map to rgb\n",
        "  ndvi_image = plt.get_cmap('RdYlGn')(ndvi_image)\n",
        "\n",
        "  # scale to 0-255\n",
        "  ndvi_image = np.uint8(ndvi_image * 255)\n",
        "  return ndvi_image"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "ViQ3PzjfgGqA"
      },
      "source": [
        "Let's walk through the steps of this function.\n",
        "\n",
        "First, perform the NDVI calculation\n",
        "\n",
        "`ndvi_image = (nir_band - red_band) / (nir_band + red_band)`\n",
        "\n",
        "The `ndvi_image` at this point is a grayscale-like array where each pixel value is a floating-point number representing the NDVI score. While it has numerical meaning, it can't be viewed as a standard color image yet.\n",
        "\n",
        "To make this information understandable by Gemini, you need to need to scale the data to a standard 0-255 integer range and assign them to Red, Green and Blue channels of a new image. This is known as color mapping.\n",
        "\n",
        "`ndvi_image = plt.get_cmap('RdYlGn')(ndvi_image)`\n",
        "\n",
        "The color mapping used here defines a spectrum where one end (Red) corresponds to the lowest values (e.g., โˆ’1.0), and the other end (Green) corresponds to the highest values (e.g., +1.0). When the colormap function is called with the ndvi_image array (`...('RdYlGn')(ndvi_image)`), it performs an element-wise lookup and conversion.\n",
        "\n",
        "* Lowest NDVI scores (water, rock, or unhealthy plants) are assigned a Red or deep orange color.\n",
        "\n",
        "* Mid-range scores are assigned Yellow.\n",
        "\n",
        "* Highest NDVI scores (dense, healthy vegetation) are assigned a Green color.\n",
        "\n",
        "In the next cell, you'll plot the colormapped image and you'll see it's mostly green (that makes sense since it's an image of a forest!)\n",
        "\n",
        "Lastly, to prepare the image for display or saving in standard image formats (like PNG or JPEG), the floating-point values (0.0 to 1.0) are converted to the 0 to 255 integer range.\n",
        "\n",
        "`ndvi_image = np.uint8(ndvi_image * 255)`"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "RoIJzEaJog0w"
      },
      "source": [
        "Now you can run the NDVI function to create the new composite image"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 57,
      "metadata": {
        "id": "k1w2Kyi_H_fU"
      },
      "outputs": [],
      "source": [
        "ndvi_image = generate_ndvi_image(red_band, nir_band)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 58,
      "metadata": {
        "id": "MGdYFDn3IEaf"
      },
      "outputs": [
        {
          "data": {
            "text/plain": [
              "<matplotlib.image.AxesImage at 0x7e7ff09b1370>"
            ]
          },
          "execution_count": 58,
          "metadata": {},
          "output_type": "execute_result"
        },
        {
          "data": {
            "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAGfAaADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAorD8TaxdaVBYwafFDJf6hdraW/n58tCVZ2ZgOSAqMcAjJwMimeHdYv7u+1TStVS3+36dJGGltlZY5Y5F3IwViSp+8CMnlevNAG/RXE+IviRpunPaW2iXOl6vqE9yYGtl1BVMQCOxZtocjGzHTqRWd/wsLxD/0Lem/+DV//AIxUSqwg7SZEqkIu0mej0V5z/wALB8Q/9C5pv/g1f/4xTW+IniBMZ8N6bz/1FX/+MVPt6fcn29PuekUV5ofiTr4OP+Eb07/wav8A/GKevxD8QscDw3pv/g1f/wCMUe3p9xfWKX8x6RRXni+PPEbjI8OaZ/4Nn/8AjFNPxA8RKSD4c0zj/qKv/wDGKX1il/MP21Puei0V5wPiF4hY4HhvTf8Awav/APGKD8QvEIOP+Eb03/wav/8AGKft6fcPb0+56PRXnY8e+Iycf8I5pn/g1f8A+MU7/hO/Ef8A0Lmmf+DZ/wD4xS+sUv5h+2h3PQqK4AeN/EpAP/CO6X/4NpP/AJHpsnjrxJGuW8OaXjOONWk/+MUvrNL+YPaw7noNFeep468SSLkeHNL6451aT/4xUn/Ca+Jf+hd0r/wbSf8AyPR9ZpfzB7WD6nfUV55L488Rw43eHNMOfTVn/wDjFV2+JOvoxU+G9OyP+oq//wAYpqvTezE69Nbs9LorzM/ErXgM/wDCN6d/4NX/APjFKnxI19xkeG9O/HVX/wDjFP21PuL6xS/mPS6K87Xx94ibGPDmmc/9RV//AIxUg8ceJD/zLul/+DaT/wCR6X1il/MUq0H1PQKK4D/hN/Ev/Qu6X/4NpP8A5Hph8d+IwMnw5pf/AINpP/jFL6zS/mD2sO56FRXnL/EHxCmM+HNN5/6ir/8Axiom+JGvqcHw3p3/AINX/wDjFUq9N9SXiKS+0el0V5l/wsvXv+hb07/wav8A/GKP+Fl69/0Lenf+DV//AIxT9tT7i+s0v5j02ivM/wDhZOvH/mW9O/8ABq//AMYp6fEXxA+ceG9N49dVf/4xS9tT7j+sUv5j0mivPF8eeI3UMPDmmYP/AFFn/wDjFQH4ja+Bk+G9O/8ABq//AMYpKvTfUbr01uz0qivMj8S9eH/Mt6d/4NX/APjFKPiVrx/5lvTv/Bq//wAYp+2p9yfrNL+Y9MorzQ/EjXx/zLenf+DV/wD4xQPiRr5H/It6d/4NX/8AjFHtqfcf1il/Mel0V5r/AMLH1/8A6FvTv/Bq/wD8YpV+IviBunhvTf8Awav/APGKPb0+4fWKX8x6TRXnH/CwvEOM/wDCOab/AODV/wD4xTT8RfEA/wCZb03/AMGr/wDxij29PuHt6fc9JorzYfEXxAf+Zb03/wAGr/8AximH4k68CR/wjencf9RV/wD4xR7an3D6xS/mPTKK8zHxJ189PDenf+DV/wD4xTx8RfEBGf8AhG9N/wDBq/8A8Yo9tT7h9YpfzHpNFecH4h+IQP8AkW9N/wDBq/8A8Yph+I2vg/8AIt6d/wCDV/8A4xR7en3D6xS/mPSqK8svvinrdhYXF3L4asDHBG0jBdUcnAGTj9x7V6kp3KCRjIzVxnGXwsuFSM9Yu4tFFFUWYfibR7rVYLCfT5YY7/Trtbu38/PluQrIysRyAVdhkA4ODg0zw7o9/aX2qarqr232/UZIy0VszNHFHGu1FDMAWP3iTgfe6cVv0UAcH8TAqxeHCAB/xNTz/wBu09c1keorpfieMweHP+wqf/SaeuX2+9ebjF769DzMa/3i9CYc4xUcwPy8Gp4VyVGe1SyW3mY+fGPauLmSZz8raMplYscKfyq5FDLuP7p+n901bTT9yA+b/wCO/wD16vtH5Q3Zz2qZVVsioUXuyjDHIEOUYc+lV5Fbc/ynqe1anm47frVSQZZm9yamMncuUFYpICpyQQPekb7xqWZsoOO9RAZFaruYtdC0qNuHyn8qeQR1BFSCTB6frTZJN2OP1rK7ZtZJEyg7Bx2qG65iH+9UwlxD93+H1qpNLuQDHf1pRTuOTViW1UmI4B61PkKOSB9aqQ3nkIV8vdk564pXm81T8uN3PWhxbYKSSG3zKfLwwPXofpWRMR5zc1dujs2d85rOlOZCa6KasjlqyuxWI2nkVLbkCM8jrUGz3pQ2wYxmtGtDJPU14iMJz6VaV1z94fnWXHc/Kg2dgOtS+d/s/rXPKDOqM0jR3p/eX86hdl2HkfnVXzc9v1pDLuGNv60lAbqXEnZfl5HfvVKQjeeRUtx/D+NVXPzEVvFHPOWo7I9aKjpynAqiLkg7VYg/iquh5FTo23PFTIuJowsBEvIrNf7hqdZsKPl/WoHOVNRFWZc5XRXbrTl7U8RbhnOPwp3l4HWtLmdhjdKVQdo4oK571IgwopAIelOjIGcmoy/HSkDe1A76loEbOoqNgcdKYjZI471OV3cZqdityIdKgYfM31q55fv+lRNDyTu/SmmJxZAnGc1Ov3RUbDGKen3RTYkSseKhfrUlMbg1KGzH8SA/8Ixq3B/49Jf/AEA176n+rX6CvB/Ev/Iq6t/15y/+gGveE/1a/QV6OE+FnpYH4WOooorrO4KKKKAOI+I6h/8AhGlYZB1U/wDpLPWJ9mh/ufqa2viScL4bJ/6Cp/8ASaesHevrXlY6/tFbscOKtzq/YspBGuCF/WpPLX0pjzx/ZgN3OB2qsJkHVv0rz7NmN4ou528DpRNI2wc96rrNHtHzfpSI6560uUOYR5HB6012Plsc84qUyKO9V5ZU2uN3Y9qtehD06lVnYjk1XeaRXIDYH0olYFRz3qLrXQkcrbNCOeRnALcfSnSSMMc1UMiev6VFK6tjBqeTUvnsjXDsYhz/AA1BITt/GqyuoiHP8NIsiZ60lGw3O4sjsG4PapUkbA57VHvU9DUDsCW571Vrk3sS3TE7Mn1qm/3jUg56Uh4NXFWIk7jTwKYSTTyQKUOuOtMkfGT8v4VLIzKuQe9QBh604jdwKVik9CVJGKjmnMxAyDVUqQelWXB2Gk0NNkTsWxk1A/3jUjcYzRglMj0prQl6kIpw6UoBpwBxTJSEBINSB29ajwc1JEDzSZSDzHHepsA1A4O41IrDcKTGieNF29O9IwxupoIpjEHNTbUpvQSnr92o0U7unapOnBqhIi60pAFJ1qaEH5qGCVxIwOD71YTk05QdmO9HlP6frWbdzRRsO2ioW/iqUDYMNwaRmGDzSRTK20HqKXAHAp+4etJuHrVmdh4UZ6UyRQG6dqcGGetO3r61JWhieJf+RW1b/rzl/wDQDXvCf6tfoK8P8TsD4T1fn/lym/8AQDXuCf6tfoK9LBO8WehglaLHUUUV2HaFFFFAHC/Ez/V+HP8AsKn/ANJp65zca6P4l/6vw3n/AKCp/wDSaeudyvqK8zG/xF6HnYv416DXmbaRgVXknZcYAp0zDa2GH51VY5xzmuaKRwyky0ly+wcLU0czbug6VTQHYKepYHvQ4oFJl3zC3JxVaRiSw+tKrHHU/nTSetJKxTdyBx8v40ij5alIB9DT0UbR8o/KquZ2KtNIq1tX+6PypCoPRR+VO4rEQY7Me1MJxVgp8h+Xt6VDtPcfpQgaBXOO1NPc0/GO1DY29qYDVOM0x2O40jE9jTTnPenYlsCcjFJShTnoakUDHQU7itcYDyKsQjc5B9Kj2j0/SpI8hvTipZSVhzoNx61Jjdwab9aC2B1qSyO4ULtx70xT8mKkPzdeaUqBGeB0NMm2pDilpqnmnYpiADmpEGM1GFbd0NTIp54NJjQmwHnmmKMGrSgbRkCoyBjgClcpoaKNg680oHtUmPl6dqASGKoBpG+9Sk8dajIYnIBNAhAoBqaA43UgQg8qcfSpYwOeBSb0HFakqHpUjMQKgJwDg4qPcx/iJ/Gotc05rD5pW3jgdKMZXPqKgk3Fu/SpVPCjNVbQm92NIxSYqR1JxgfpUL7gxHIprUT0H0Ui9aU9aAMrxMx/4RbVh/05y/8AoBr3dP8AVr9BXg3iXP8Awi+rf9ecv/oBr3lP9Wv0Fehg/hZ6OB+Fjqx/EniGPw1pUmozWF9dwxI8kotI1YxoqlmY7mUAYB71sVzHxAuDH4H1i1jtL26nvbKe2hjtLWSdi7RsFyEB2jPc8V2HcXdT8S22mx2AW0u7y6vwWt7S2RTI4ChmPzMFAAIySR1A71b0bWLXXdNS+tPMVCzRvHKu143VirIw7MCCDXH/AG2RNT8PeIk0zVZLO3s59PuY/sEomiZvKZX8orvK5jK5APUVt+CrS6g0y+uru3ktn1DULi8SCUYeNHb5Qw7MQASO2cUAY3xOZfJ8O4IP/E1PT/r2nrmdwrU+IHh3RNLm0G80/SLC0updUZZJoLdEdwbeckFgMnJAP4Vk4rzsZ8a9Dy8b/EXoV5GB3D3pqDOalaJTk5NKkajPJrmvocNnccnCAUoOaaTtOBSKxzSGTAZFIyHB6U6LlfxpW6EVN9S7aEKcGn7wOOabjFMZiGNVuTsKZAR3pUcDPWmAUH5elFhXJi42nr0qJpBjvTwMr+FRSIAvfrQhtjS4J70hO4YFJipEQEjrVEEYjY9xThAxHUVIw2dO9AkIHaldjshjIVUk4qPeB6055GKEYFQk1SRLZZUZx704/IMmoElYFRgVJI5K9utJopPQXzB6Ghvu1AXOe1SsflNFhXuKrBetKZAUI56VAzn2pynIFFguKikmpQpApEGDT6TY0hw6Cl3BetNzR1pFD855pNpFIDgU4nikAlBkGCMGmliDQFDde9OwDR83AqzHExjByKYkSg9TVhPlQAVMn2KjHuRv9w01DjNSOo2GoSdvSkhvRg7DcRQnWo2OWzShyPSqtoTfUlKluRTBw/0NJ5zDsKAckH1oSC6LMZ3ZxUUqEyHpTkcrnGKCdxyanZl7ohBwad97kUqxgtjmrMVuhXq3Wm5JCjFswfEyH/hFdXPH/HnN/wCgGvdU/wBWv0FeJ+KYlXwnrGCeLKb/ANANe2J/q1+gr0ME7xZ6ODVosdRRRXadgUUUUAcJ8TjiHw4T/wBBU/8ApNPXL719a6f4oc2/h3/sKn/0mnrldvvXnYxe+vQ8zGv94vQa3JNC8ZzTguTjNOMeO/6Vy3OKww9aiUc0532OVxnFEY3tjpxTJHp0p4+8PrQEwOtML4J46UitiZyCKgYgMaUzZ/h/Wo2O45oSBu5NkHgU11PFIrfMKkJ3UbBuN6CkJBpSOKaRt5oEOUgCmj7+aBzS9BmgBWqrKCZDU7P04qF2yx4qkKRDShSegpKer4HSqM0RkEHmjcPWkaTkjFNHJpiHEjNSBgaj2+9PC4Oc0mNDtpboKsRKwiHFRwru3dsVbVMRdexqJM0iiIjNAU46Uo604UhjTwOaQMPWnMMg0wJnvQAHk5FTCNs9KYsfyjmrR+UZpNlRXcgKkHkUqkBh9aczbjnFNxjmkProXIWXeee1LI67zzVaOXDdO3rSs+WJxUcuppzaEisM9agvGB2fjTTPtGdufxqCe48zb8uMe9VGLvciU1awAE8ilKnHSmxvkAYqbGatmaVyEox7VIiNleKkCcdasC3wgbd2zjFS5WLULkLIx6ClWJyPu/rTwcVNHygqW7FqKbG528npSiVD3/SopHzGeKg8zbxj9aFG4OVin4pdT4T1gA/8uU3/AKAa9tT/AFa/QV4T4mkz4W1cY62c3f8A2DXuyf6tfoK9LBK0Wd+Dd4sdRRRXadgUUUUAcF8UM/Z/DuP+gqf/AEmnrlMt7/lXWfE//UeHP+wqf/SaeuWrzsX8a9Dy8d/EXoNQt5gzU4wetRAYbNPBrkZyRI5I1Lk4poG05AxUjfepp5FMTDee5qFmO4805+tMxzTQmC5J5p+KQHBp3XmgQoHPSpF96bnFG4UihWIwcGoSzEU/qcetL5Teoo2FuNj5Xn1pzfdOKURn1FDcLzRcdiE+9RtjdUkjDioSeapEMZRmlKnFNxVkBtU0BQO1GKM0APVcjoal2A9qajgIOtTBTUNlpDoVUbuMVPldmMjp61AvFHVsetS1ctOw44A4oXJHHNDQtjqKmgibYeR1pN6DSbYLFuwNpOalS2znMbfrUsfyOCe1WFmUZ4NZOT6G0YR6lYQKBgoR+dQtnaeKtvMpc8GqzHCmiLfUJJdCA8deKXqKbINzZHpT0U/LWjMluJgrzjFMZ8H7wqw6kiqkiHzD0oWoSuhGDFSMH8qiaNu6t+VXgMGmydqakJxIYY+Fyp61Y2qO1MVgMU7eG4GaTuxqyGu4U43AVN5/7rAcfd9qrSQtI2QR0709Ld/l5XtQ0hpyuOUufX8qsRlggzQkTLnJFDMFODUN3LSsMKgjGKgljw3CnpVpBlwKJYzuHTpTUrMTjdHO+JVx4W1bj/lzl/8AQDXvCf6tfoK8K8UceGNYH/TpN/6Aa91T/Vr9BXp4P4WduB+FjqKKx9W8UaTolwIL6eZZPL80iK1ll2JkjcxRSFHB5OOldh3GxRWTf+JtH02ztLu4vA0V5g23kRtM0wxuyioCzDHOQOlXdP1C01WwhvrGdJ7WZd0cidCOn4HOQR2IoA4z4ncw+HP+wqf/AEmnrmNorp/id/qPDn/YVP8A6TT1y9ebjPjXoeZjf4i9BDTkGc05RkjinFCfuqfwFclzkSI2HNIVAFPKtnlTn6U1/u8etMTRBJw34VEGJYD3qVxzzQFGQcCqIYoQe9NZipwKeSB3FMJUnqKBsXefakLkelIQcdDQAe4/OgRIp5U1MzHFQ9uKYWbuT+dKxV7FhTkUx+Qai3H+8fzpSTt6miwXI5B0qI9akfPHWoyDnoatGbA9KQCl596TmmIYTyRRSEHJ4NKASehpkkqD5RWgYlAzk1RQfIMitVyhQ4K59qym9TeC0KpQD1qWKBW2sSc5pVXdnjP4Vcjjxa52c4PaolKxpCF2RNCuOppB+7GB+tMLNjkmo2kweXx+NSkxtpEpkYZ4FIJ29BVPzMuRv7+tSowOef1q3ElTuStKxPQUjOSp6VGTz1p7FdvUUrBcZmjzmBxgVBK+HGG7djSBhj7361diOYtrKzHBAqNzlyahDgH7360jPk/e/WhLUHK6J2lYDOBTRIZOuOPSmAEnHNOwR2Iosgux1Oj5b8KhJweTUkTDcee3rQ9gT1LKqMVYWMYB5qizkH72PxpRK3H7w/nWbi2aqSRfYYqBxlzUfmE/xn86cDkZzmko2Kcrj0OHFWFQSDJz6cVSUsGHJq5buojOWGc9zUyQ4O+jOe8VxKPDGtcni0m/9ANe4J/q1+grxLxXz4X1oj/nzm/9ANe2p/q1+gr1MD8LO3CbMdXG+NPGlpotzBoUepWVjqd7GX+0XkqpHbRZIMh3EbmyCFUdSOcAGuyoruOs86D6N4Y1jwrfC8jPh2DSJrG3vmcNErkwlSzjgbljbnoSMVueAUc6HeXXlvHb3upXV1bK6lT5TysVOD0DfeHs1dTRQB5h4+0q8s59Bnn13UL6N9UYLb3CQBEzbznIKRq3HTknr+NZeK6j4nf6nw5/2FT/AOk09cxXm4z416HmY3+IvQsxQbtvzdR6VYWHy/4s59qijYqikHnFNlnkGMN+lcDu2ZLlSGzNiVhiq3Wns7MxJOTVYyMBwa0ijGUiQx7jnNI0eFJz0FLExZSSe9SMB5Z+lPYVkykeRTakYACmHrVozZZpjHpTdx9aUfN1pFDg2RjFIyZHWnYGKBzQBHtx3pSflxUm0HtRsXHSlcLEDDNJUrqBjiozwapCY0jimEc1ZZFCnioHGDQmJoZinLwaSnqBmmJIlRNyg5qbpUAYqMA8U4u2OtQ0WmXLd8buPSrgm/cFdvY96yYZH+bn9KsrI/l9azlC7NoT0HOcr+NUrj/WD6VYLE9TUMoy4z6VUVZkSd0VRw+alSXGeP1qBjhj9aAxHetbXMb2LXmZ7USPiMnFVt7etOd2KEE0rD5hrPk9KN3HSkAyKMCmSIWx2pQ/HSggYpvSmBdSTLDj9akLZ7VTDsDkGgzP/e/So5S+YlkPzGkhbLnjtUJdj1NLGxDcHtTtoK+pabk00N8wGO9LH8y5PPNG0b+nepKJVOc1KpwopiKOaUnBwKlmi0HluOlIHwOlRljjrTdx9aLBzFHxO2fCer8f8uU3/oBr3BP9Wv0FeF+JSf8AhE9W/wCvKX/0A17on+rX6CvQwXws9HBv3WOooortOwKKKKAOD+J3+p8Of9hU/wDpNPXMYNdR8TRmLw4P+oqf/Saeub2e9ebjH769DzMav3i9BB0prc4p5XC5zTa40crIW61EEYdqsmPJzmkKe9XchxI14HNSbht/CmmPnrRjjFG4bDMimnk0pHFNJwaZIKp3dKftPpQDg5p6tmhjREAQ341LkUFOC2femFsdqW4bEnWkYgKaarcdKVxlDQMYWB70nWkxijdjtTJG4pQCadtpVXA60wFBGAO9DA4pucHPpSmTI6frSGQOpLnipNjHtTwm4ZzilLbRmncVgiRlzkU5iMEd6YJv9n9aTfubpjNIYBSegp6qQOlOROetP2+9JsaRWaNjnikWNxnj9anY4BoQ7s9sU7isQGN89P1prI23pVzb71Wzu4oTE0RAEDmnH7p+lP8ALz3pxh+Q/N29KdxWKo4NL1p4iz/F+lSrbZUHf+lNtCUWVypp0anmrTWeFJ8z9KYI/L75z7UuZMfK0yB0bcTipbVT5p/3alEO9N27Gfaljj8pt2c8YpOV1YpRs7l6AHYfrTWRtx470kM2EPy9/Wj7R82Nnf1rGzub3VgAK9eKevK0x33Y4qzBDvhVt2M+1JuyuxxV3ZFVvumkTlfxqeWDEZO79KhQbRjrTTuhNWepneKCP+ER1gf9OM3/AKAa9rT/AFa/QV4d4om/4pbWF2/8ucw6/wCwa9xT/Vr9BXpYFWizvwjvFjqKKK7jrCiiigDhPib/AKrw5/2FT/6TT1zWT610vxNGYvDn/YVP/pNPXN7TXmY3+IvQ83GfGvQjJbnk4pBn3p7DCmkU9a5b6HHbUbkjvUqYJ7Go2Uls0+EZc/Sh7AtyTaPQflVaTq341bxiqkn3m+poiOZDz71G2c1KRxTD1rRGTEVvmHNShgO9Qqp3U/aaGJEm7PG79abj2poUhhUpPFIoRRx0pzY2UgPFI/KkUgEHPvSEDPSlj+XOaG5NMBRjPanYFRDrUq9KQIjKnJ4NIF9qnI+Un2qLzAvJzQmDQoBAqFtxGOTU4YMMikUc0wIFVu4P5U8Dkcc1MRTQpMg+oouKw5A27oanTAX5uvvSqpU5NNk+9+FQ3c1SsJKY/Lblc1HDg5ximOpbIHrSwqY857+lO2hN9SfHtVJAd44NXlkAXGDUCRNvHIoi7BJXsSwoChyo69xTmC8jApyfIMGo2YZNTuytkN2r6D8qlQLtHSos5pw6U2JEgIJ5Ix70jqpxtUH6CmHpTozjNK3Uq/QljVQgBA/KmzqAgwoHPYUeYAe9EsisoAB60tbjdrEKnA5OKaTyTmkYbjkUg64q0jNsnhy27PNadvxAv4/zrMg+TdnvV6KdRGBg1lUVzak7bj5tpibGKrKBjkCnNICuMGoy4HrSirIcndmH4pH/ABTGs8f8uk3/AKAa9zT/AFa/QV4b4oGfC2sH/pzm/wDQDXuSf6tfoK9XBfCzrwXwsdRRXM+L9Bj1S2WePw5pus3iKURb6YxbFwTlTtbnOP7v1Fdp2nTUV5N4UsNO8Wzx22tSS6lbWOh2n2Y3eVbe7TLLLjJw4MaruBJG3g85Pb+Ary51DwHot1eStLPJarulf70gHAY+pIAOfegDI+JQyvhsf9RU/wDpNPWB5a+pq545uNce80BdS0/T7e0GqN5ctvevK7H7PPjKmJQOM/xH8etVd6+teXjv4i9Dz8XbnXoQyINp61CBipmYZPPeo2IrlRxuwBQRSxcMfpSB1A60hYetAtCZmOaqv1Y/Wngg1KAdv4ULQH7xSzmmN96rU6nYOO9ViMHBrRMzasPCDPelKgUuCaQqfSkA3vTsZpNp9Kdg0wExinBQeKBwKVeGpDEKBemaNgPrUpINNI5pXHYi2Ac805elSPypqE8dae4mrDmY7D9KrE5qbBzTtpprQT1I0PyipDwM09QcUlK47CKd2c1KkS4DZOetRgGnAHNJjRKWOKUIHGTmmoCDzStyeKgshZArEjPWmMxFSPE+CccfWmojDORV3IaAHIqYDBzUkbARgHrTWYbetS3cpKwjHmoj1NKSM00feH1poTY4DmngcUbgO9MZgTkUbj0Qp6Um4r0ppBxSbTTsK47cSaHY4qROFFSZz0qbjtcqbjSgcg1bCsegqVo38knH8PrQ5oapsqr3p4cgY4pqkLnNTpIgQc/pSY0RbjSgbuTT0ILCnkgdalspIw/FCj/hE9Y/68pv/QDXt6f6tfoK8Q8Uj/ildZP/AE5zf+gGvb0/1a/QV6eB+Fnbg/hY6sjVfDOl6zcCe9S5Mgj8s+TeTQhlyThgjAMOT1z1rXoruOwwb3wZ4fv4baGbTlSO2h+zxC3keDEX/PM7CMpx905HtW3DDFbQRwQRrHDGoREQYCqBgADsAKfRQBwnxNO2Lw4f+oqf/Saeub83/Z/Wuk+JozF4cB/6Cp/9Jp65vYvpXmY3+IvQ83GX516EZfknFMeTGOKkKj0pjKDjiuZWOJ3Gb89qczYHSjaPSonJxTJJFkwOn61Ms3AG39aqAnFPDHjmhoak0WXO9cdOagaPLHmnKxJ5NWo4kZASuT9am/KVbmK+3HOaazdKe/CmoiSaaExRyRT9nvTR0FO3H1oYIQrg0mOaRmOetCklgDQIkUZpcUg4pCxzSKDOeKjk4b8KeDUcn3vwpoljh0FPAzUYJ4p6nmhgh2MUm33pwpD0pFNAOKAfmFA5oxzQBITigHNMYnFCk4pWHclY/u6jp2SVwaUKPSkN6iDpT3h2qTu/Smng4FSuSUNDGkVWGDQF75ol4YfSmhjwM1ZHUVhxSU/r1qNuGNCEx272qSJPMzzjFVgxz1qzbk/N+FKWiHHVknl4O3NSRw5b73b0qNmIye9Mjnk3fe7elRZtGl0mW9mzjOaHuP3bJt7YzmofNduSf0qMsSTmko9ynLsRO+McU3zscbf1p0gHFQkDNaqxg20y1DJmUDFTvyapRMRICDVjex6moktS4y0M/wAUR/8AFIaw2f8AlxmPT/YNe1J/q1+grxHxRI//AAiWsDPH2KYdP9g17cn+rX6CvRwN+Vno4S3K7DqKKK7jrCiiigDhfiYMxeHB/wBRU/8ApNPXN7D7V0nxL+54b/7Cp/8ASaeuerzMb/EXoedi/jXoQbwHxzmnfe6VGwxIT7mlDkelctjiuOPBphiY9xUgG4ZNA60XHa5CYyvBxTfappPvfhUJ6mqRDVgAwalVgFxUW40m8j0oauCdidj8pqJhmjeTxxT1UNnNGw9yvnDfjUi8mnGFck5NAUA0XJs0IykmnBSBmjFDHC0DDNJmkU5oxQAgcE96cOaYFANOBxQIWlzTc07FAxwYAUu4GoicGn9KVh3JFOKduFRBjSFyPSlYdycDNPTgVUFw47LUizsR0FJxZSki0VJFNMZPpT1OYwfYUhYioLKzxneeRTxwaeRuOTTBycVVybWHbhUbqcMfqak2ilKAqRzyKE7A1coMwUZNV3YFyauzwKEHJ61WMK56mtYtGEk1oOjgbzByKsrGy5yRTokBkA5qd0C4xmolLWxpGGlyL+Db3xURQj0pWkIm2cYyBUxQEd6Ww7XI0Qle1Hlnd261Io2jApVG6RQe5pXHYgkUrjNR5xV+5gVduCe9UJBtcgVUXdEzi0ycnIpppoc+1LnNFgvczPEw/wCKU1f/AK8pv/QDXuaf6tfoK8M8TH/ilNX/AOvKb/0A17mn+rX6CvQwXws9LB/Cx1FFFdp2BRRRQBwnxNz5XhzHX+1T/wCk09c38/8AtV0/xJGV8Nj/AKip/wDSWesHZ715eNdqi9Dz8WrzXoU2HXjmm1Kw+Yj3pjjGK5kzhaHp9wUuPamqflFPZsDpSKWxBLncPpVVi248nrVuQ5b8KgKZY896uJnLciy3qacNxHen+V7/AKU9UwMZqrk2GjrT1J55pMU5RipZSLKbSFzjtSzKmwbVXOewquGwQcdKlEu/jGPxqGmaKStYjI9qilztbFWhHv5zimvbfKTv/SmpIlxZTj3c5zUo6U7y9nfOaKq5NrEQz708dKeY+OtIEx3ougsyE53d8ZqRTzTynHWmBcUXC1h4A9qD04oC5HWniPB61NyrEJz70w5z3qwy9OajI+emmS0RBW9D+VSJwOeKlVdxxStFk/e/Si41EdvOwAMenrTCX9WoUYepVTf3xip2KV2LGf3YyefeoQTnvUjfIdvXFCJ845pDGEsD1NORjuXJOM+tOkj+br2pu3Hen0DVMmkCMuPlPNV2Vdx+UflTt2O1QSS4c/L+tEUEmiVGAcHIH41MWDfxA/jVHfjnFOjm6/L+tNxJU+hI4/fZx3HNWLf5pCDzx3qAHfz0zUsJ2OT14pS2KjuWGUZ6D8qiGBIOnWpd27nGKBbZYNv6nPSs0+5pa+xL8rfewfrWdcgfaGwBjjp9KvtHsxznNVZY8yE5pwdmKom0UQTnrTg3+1+tNZcKTmomODW+5z3sV/EpH/CJ6tyP+PKX/wBANe6J/q1+grwPxHJ/xS2qjH/LnL/6Aa98T/Vr9BXdg1aLPTwLvFjqxtf1Se1WDTtO2tqt8SluGGViUfflYf3VBH1JVe9bNZereG9E154n1bSbK+aIERm4hVyoPXGRx0rsO44vQ9d17xBZeG9NXVmtrq7sbi9vL5IIzIyxyLGqqpUoMlwSdvReOtdT4R1S71PSZ11B0kvLK8nsppUXaJTG5UPjtkYJHrmsXTPhyugafpg0O/gstRshKr3P2MNHcLJt3B4wwJPyR4O7I2j6V0vh/RU0HShaCd7iV5ZJ57hwAZZZGLO2BwOTwOwwKAOG8da/aajd6BaW8OoJLFqjFmuNPnhQ4t5xw7oFPXsTnrVPe3rW98Tf9V4c/wCwqf8A0mnrma8zGr94vQ87GO016DxzJz60SqOOKiU4fJqTevrXJazOO90NHSlkJC/jTGILGhQSeKdhX6Dck9aTHNTbGPal2N6U7hykQAoPBqRkbHSomRt3ShO4mrDFJJp9RBGz0p3lt6UydR2aFYg8GnKjZAxUvlOP4f1pNopJiwsSh571MPm4PSo1BUYPFPjdRIOazZqgeNOOP1qFkUHpVtnU4wagcEuSKEwkkNCgnpQVAPSpGYBSTQvzDI5ouFiDvikZQB0qZuAc1FuDcA1SJaBQNtIWOOtPEbkZAqMjigT0DcT1NJ/FSipF+7TvYVriJ978KsRorLkjPNQ/d5NPWRAOT+lS9S42QrRqCSBSLxnFKJF3damjYNnBqW2UkmRbFbkjmkwF5HWrOQKjcHYaSY2is7tu69qZuPrSTjDj6UwA4rVIyb1FdiB1qIjccnrUoRj0FIUYHBFNWJabID0p8Sg54pCjY6Um0jqKoktqoEeQO1NV2B61CrAYGeasxfeP0qGrFp3J7f5oyTzzVxQNo+lRW8ipGQxwc0MwYnHesJas6Y6IkcA4zUZiQnJH60ijGc07cB3pbD0ZlSqBGaqkc1pyo3lnis+ZSHGR2rpg7nJNWMnxH/yLGq/9ekv/AKAa9/T/AFa/QV8/+Iwf+EY1X/r0l/8AQDX0An+rX6CvRwnws9DAfCx1FFFdZ3hRRRQBwvxMGY/Dg/6ip/8ASaeuc8v3rpviNjPhrOMf2qev/XrcVj4j9FrysdK1RehwYqN5r0M/yOc7v0pGj29/0rQATd0Wh1i4yE/SuPnOX2aM3y896ligyx+bt6VYIjzwFpY2QN1Xp603J2EoK5GY9vGc03HNTSMm7gr09ablfakmNpDdm7jNIbbJzv8A0qTI9RTSWzwTii7CyK3lbec/pQBmpSpx0NRsCOxFXci1hQMEH05p5mz/AA/rUWTimkmi1wvYdJPhvu9vWmpLlxx+tMILHOM04ADHGKdlYm7uWk+bPbFDcHFRRt15/Wnlh3NTbU0voRvLlSMfrT4Xwh471XY/KcGljJC9T1qraEKTuSu+Qwx61XD+XzjNT445pjbcc4oQMcl5tUDy/wBaiMuB0/WmMvzHaOPamkHHQ01FEOTJFlz/AA/rUqv8o4qsAfQ0o37gPmxmm0gUmWXkyOlM3Z7UoB7g/jThtxzipK1YqjgGpoX27uM5qMEEYBGaegPPFSy46Ehlyen601p8j7v61G2QxpNp9DSSQ3JkUzbnBxjikB6Cpio7r+lJtH90flV3Is7ix/e/Cmv9804e1IevNT1H0I9vvTWXpzTsj1pDzVEsYseXHPf0q9bwbpCN3b0otUU+XuUE57j3rRZUUZVVB9hWc59DWnTvqVHh2nG7P4UgOCBVkgHtmkCrn7o/Ks+bua8vYjVd3til8r/a/SnSDbjAx9Kbk+pouFkQsu5SM4qjcW+ZB83b0rXjQFwCo/KmXMQ8wYQdPSqjOzIlTujkPEqY8MasM9LSX/0A172n+rX6CvCvFKkeGtZ+U/8AHpN2/wBk17qn+rX6CvXwb91nTgVaLHUUUV2HcFFFFAHD/Ejp4b/7Cp/9JZ6w81ufEjp4b/7Cp/8ASWesKvKx38RehwYr416CBwG702Vwcdaa5xk1EXJ9K5Ejkb6Eo5FM2leTSqflFSOoxRsG6IsZp4HSmninqeRQCFWM57U/GOKM4pjOd3alqx6IUuMd6idg2MUFjimg5ppEthsOM8UxlOKmHSmsoxTTE0NjU7fxpHUhSaep2jAp7IGj5zzRfULaEUEZfdjHGOtK6FXIOKsWkSjfye1NmQCZutLm94rl925S2kU4HArQkso1jJDP+YqlLGEbAz071SkpEODiG4bce1RMpYYFPPSmA1SJY5RhQKQ9KXNNPSgAAzT1U5BpgOKkVjgUMEOkYbfxqIsM09+RUeKSGyWIZkWrQ+XrUcUSgK2TnFSPxiok7s0irIhk5c07zV9DQVBOajCjNMQ5pBnvRnNOWJWGSTUbfLnHagNRx+Xk1GzDcaaZWbggUYzzTsS32GhTmnqpopy02JIlicJtzng1bN0h7NVAHkCpM1m4pmsZNFv7Sno1OWZSRwaz2cg9qkSVtyjA6ik4FKoX5P3mMdvWo/u8GnIxOajkYhzUJdC2+o5LpFcEhvypJbuNnBAbp6VS3GnqocZNXyIj2j2MrxUhbwprLjGDZzH/AMcNe2J/q1+grxvxTGB4N1g5P/HhN/6Aa9kT/Vr9BXp4B3iztwqtFjqKK5LxJ4yk0PxBa6RFBpm6e2a4E2o6n9kThwuxf3b7mOc/ga7zqOtormL7xNqceoDTdN0WO/v4bNLu8QXnlxxBiQqK5Q72JV8ZCjAySM1s6PqtvrmjWeqWm77PdwrKgYYYAjOCPUdDQBynxJ5Xw3/2FT/6TT1gbT6Ve8ceItE1W88P2Wn6xYXd1FqjNJDBcI7oBbTgkqDkYJA/Gq233rysc/3i9DgxS99ehAynB4plWHHymoStciZyNCqDinqpJ6UIvyjmnFtnOM0mxpDGUg9Kb3pzy5PT9abnvTAVjxULfeNSM2B0qItk9KaJkxV+8Kk3AdaiVsHpQ79OKdhXsWdwK9e1RsOKYr9OKeWz2qbWKvcaeOtKGHrTSMmkC89aZJKrqOpqNyC5IpG4xTetOwN9CQg4pu0ntTycihRxSHYjKNg8VGyNjpVrHFMZcjrTUiXEqHg4NAPNSPFlic/pTVj+Yc1d0RZjkIGc1OoJTI6VGIs/xfpUqtsTb1xUPyLj5iBSe1KVPpQj5PSn5zSZSVyRSAoz6UjEHpTGbC5xTVkznipt1Kv0J1HyigHByaEb5RxURl46frSsO5KXXPWmGN2PyjOelRl89quQjIjP0ofugveKxtplGSmPxFJgrwetaUy5Qc96pvDlid36UlO+5UoW2KO4VJHzmmiLn736VNDF975v0rRtWMUncXB8s/SoAOatmP5CM9qiEOT979KlMtxI8E00wSfe28deoqyIMD736UjS7VK46DHWnzdhcvcLVSN/HpV1GAUAmqVvJ97j071P5ntUTV2aQaSFkH7s0kSMVOB3odsqeKI5di42559aWth6XKHitSPBmtcf8uE3/os166n+rX6CvH/FdxnwbrQ29bCYdf8AYNewJ/q1+gr08uvyyuduHas7Dq5/X5roStBD4VOsRywbfM82BVySco4kYHb0OQG69K6CivROg850TQvEXgvyZLbTxrLz6Vb2kyxXCR+VNCX28yEZjxJjIyRt6c113hTR5NA8K6bpU0iyTW0CrK6/dL9Wx7ZJxWxRQBw/xGUD/hGyAAf7VPb/AKdZ6xcmtj4ljdH4bA/6Cp/9Jp653yW9RXlY5XqL0ODFO016E7cg0wigcAD0pHGcVxo5WxQxAwKc/IqMDAp0jDb+NACBQe1NPGaTcKTPNVYm4Hkc1GetTUhUk00xNEajmh1HFSbwPWmO4OOtANKwYAFJuNM3CjNOxNyTJpy8kVGDxSdDmlYdySQYxTBSbhSdeaaBsfuNPUnFQgYNOFJoEyQsfWm7j60g605ulIYAA8mmoo3ijFShhmmCHoinPFRygAtj0pzfNjFSpbu0W4FcYNRe2rLtfRFNCd34VMCcU4wsoySKieM57VV0ybNDzyMGhVA7UpQiPt0oiQvnGOKXQfUmRRsFN8tPT9asRDbGAatEZFZOVjVQujPWGMj7v61eijQBOPTvShCfSpQdqgntUylc0jBIJUXaOO9Vyi56VO06sMAGlEgx3qdUU0mVvssP9z9TTlt4l6L+ppsl0jIQA1VnYPjHarSk92ZtxWxcaGPy2O3nB71RkOxcrwc0jOAhXnOKqOMrVwj3M5z7ImMrg/e/Soi7EnJ60i/KMGl8wdMGtbGV77ioxXODirCMSgJNVG+bGKTOOKTVwUrGq6gIeKquxVsCpk5cU9xzWSdjdq5zfiiVz4V1hd3H2OYdP9g17gn+rX6CvDfFX/Itaz/16Tf+gmvck/1a/QV6+C+FnTg37rHUUUV2nYFFFFAHD/En7vhv/sKn/wBJp6wc1vfEjp4a/wCwqf8A0lnrDwPQV5WOf7xehwYpe+vQjHLU7aDTsDPQU5QPauK5zWIiKjc5FWsD0FQEDHSmmJoYqhhk03aN+PepRgegphxmquKw/aKaeDSqeetB60gK+4mkxmh/unFMXd71Zm2OKjBpoNTAfL07UxgMcCi4NDQad1FNoXJYdaYgPFOUZFO2+36UYxSuVYVkAGeaYWIpxJx1pAAaAfkAPSlJpccdKbgnsaQDx0pAxzQA2OhpwXnpQMVDuzmrEczKojAGOlQquO1SIp3LwevpUSLjdEpG4YNRtGM9TVjb7fpUMquXG1WxjsKhMtoAgbCnOKligVc4Jptuj+au5Wx7j2q+iDn5f0pSlbQqEb6lNvlYgVKkhLAcVMyLn7o/KmTBViYqAD6ipvcvlaEaQocACmeexO3AweKoXEj+YMO3TsaYjSb1JZsZHerVPQzdXWxosdgyKjNw6nAC1FJISow/f1qq7nefmP504wvuKU7bEqSF3CnGDU6oD61nxtiQHd+tSvKRjEh/A1bj2M4y0uySb5WYCoAc0hYnJLE/jUUhIXg96pImUicKCKjx+8x71GjNj7x/Op025UnHanawr3JRCp7mmtCu7qasxMhzkrTj5ef4ay5nc15E0RJKwYHApXnbPQVHsf8Aut+VSIjEcqfxFPQE3sc/4p58MawfW0m/9ANe5p/q1+grxnxVEB4Q1k+X/wAuMxzt/wBg17Mn+rX6CvTwLvFnbhI2ix1FFFdx1hRRRQBw/wASThfDZ/6ip/8ASWesHePet34k/d8N/wDYVP8A6TT1gYFeVjv4i9DgxXxr0HeYPelVx70zaKUAVx2RzXZMDkZqJulOBIGBQQMVOw3qQEZNJtNSkClKjaTjtVXJsRCl3ChRk01uGNMREeRQoxT2UBSQKZVEMduGMUnWmA/N+NS4Ao2BajCh9qF+U5PanE0xj1pg9CTzB700nJzTAc06iwXuITxQDxSkDFJgCgRJuG38KVD81IAMUqAA1JaJMZpBwaaWIOAaFJJpWHckDgetTwsCyD1NV8VYgA3R/wC9/WplsVHcuOhA7UwDAqSckIMetVy7etZLU3ejLCMCwFTBgvWq0ZO4HvU6/N1qWVFjWmUMeDUU3MLCpGRdx4qLO7g9KaFIoSRkt1HSneWQnUdKmmUK4AHam/w/hWvMYcupWc7Rk1A3zMSKsXAAjGPWq1aR2Mpb2GEbRk00yD3pzklTUYANaIzZIrgr3pGG4YFMHBAqSgLgqkCnA9qQGnYHWkNE0IzupxYKcGi1Gd+fapGRSx4rNvU1S0LOcU0zKhwQaeACcGmSRoW6dqyVups79DN8VzK3gzWQAebCb/0A16+n+rX6CvGPFRI8I6yB0+xTD/xw17On+rX6CvVy9WjI68M7pjqyNW8Qw6XdwWUdneX99MjSJa2aqXCAgF2LMqqMkDkjJ6ZrXrz3xXolq3jyHWNY0m71TSpNM+yiK3gecRzLIWBaNMnkOQGxgEduDXoHSdNqHieLT4dPDadfy31/uMNhEiGb5RlicsEAXIyS2OR1zV3RtYtdd01L608xULNG8cq7XjdWKsjDswIINcLptrq+gjwtq+p2V/crb2d1Z3EcSNcT26ySI8W5VyzELGEYjPOPrXS+CrS6g0y+uru3ktn1DULi8SCUYeNHb5Qw7MQASO2cUAZfxIOB4b/7Cp/9JZ6w96+tT+O9Bs9MutAvIJtQeSTVGDLcahPMgzbznhHcqOnYDHSqO72ryscr1F6HBinaa9CcnI4pBxTQ/A4qSMeZntiuLY5tyWNgEHNQyH5fxpS2w7cZxUbtkUktRt6WFQjFOJ+U/So16U4/d/Cm0K41OtNcEuaUNg9Kaz89KrUnQjYjbTMgUp6U1qtGbYu9c9aXcPWowmSOak8v3o0BXGNyeKX+HFSCHI+9+lSC04zv/SjmQ+VsgjBOakCnFSpb7c/N+lDLtYjNTzJlKLSGop3Dipgpx0pkR3SAdKshMDrUSZcVchZTsbjtVUgjrV8rnK568VDNb7UB39/SiMglFkSRuyggcfWrH2O4/wCef6iiIbYgOtaivlhxUym0XCmnuZn2SdeqfqKlEbpF8wxgEmr784qOWPMD8/wntUc7Zp7NLYoJNGG+929KsRzx7fvd/Q1TW3yfvfpUqQYH3v0q5KJnFyLBYEZB606J1XOTTTHtiznPA7VXkl8vHGc+9Qlctu2rNNJU2jn9KiU4NVEuvkHyfrUomycbf1pOLRXOmOmUu4KjIxUDcA57VMZcH7v61Tln++Nvr3qopkSaIbl1MYwe9UmIzU0j71xjHNQHrXTBWRyTd2B5FNIIqXb7011xjmquS0LHzt+tTFGHaoY+Cv1qyWyOlTLcqOxXcYb8KaCM4qV13NnPaoduGznvTQnuSdOtSo6hRzUJOaN2OMUrXGnY1wwz1oYEniq6TZcDb+tW4V8xCc45rnasdUXzHP8AitG/4RPWjjj7FN/6Aa9oT/Vr9BXkfi2DHg3W23f8uE56f7Br1xP9Wv0Ferl7vBnXho2THUUUV6B0hRRRQBw3xL5Tw3/2FT/6TT1z20+n6V1PxC0/Ur610aXTdPlvmtL/AM6WKJ0VgnkSpn52UdXXvXIWD65qenW1/Z+FdTltbmJZoZPOtRuRhkHBmyOD3rz8XSnOacVfQ4sTSlOSaRMQ2Ohp8W4Z60n2TxJ/0KOp/wDgRaf/AB6nLbeJB/zKOqf9/wC0/wDj1cjw9X+UwVCpfYUpIxyFY++KQRSk/wCrf/vk1YjXxCiBT4Q1XI/6b2n/AMep6nxCD/yJ+q/9/wC0/wDj1R7Cv/KafV5ECwSY/wBU3/fNOML4/wBW3/fNWBJ4gH/Mn6t/3/tP/j1Ju8QZ/wCRP1b/AL/2n/x6l7Cv/KP6uysIH/55N/3zTvs7f88T/wB80lrqWr3dxdwweE9WeS0lEM6+bajY5RXA5m5+V1PHrVnzPEH/AEJ+rf8Af+0/+PUewr/yh9XZReLCkmPH4VEVX0H5VZlh8RvGVHhDVMn1ntP/AI9VU2HiU/8AMo6n/wCBFr/8erSOHrdYmUqE+iHgJgcLUsKoXOQp47iq32DxNn/kUdT/APAi1/8Aj1Sx2niRGyfCOp9P+fi0/wDj1Dw9W2wRo1L7FwJH/dX8qR9gQ42iofJ8R/8AQoap/wB/7T/49VKaXW11GLT28K6mLqeKSaOPzrX5kQoGOfOxwZE/P61Cwtb+U0dKfYuMc42n8qVVBHI596iS08SLnPhHU/8Av/af/Hqf9n8R/wDQoap/3/tP/j1V9Wq/ykexn2LUcShwfLA/CpWCg9BUGPEP/Qn6r/3/ALT/AOPU108RMcjwhqv/AH/tP/j1Z/VqzfwmvspJbETMfOOD/F61J1681WNn4kMhb/hEdTxnP/Hxaf8Ax6pBb+I/+hQ1T/v/AGn/AMerR4ar/KZqjU7DJGKuQCQPTNPjlk8wfvH/ADNUL065bXdrFN4W1NJLyUwwKZrY73CM5HE3Hyox59KtpZ+JVcE+EdT/APAi0/8Aj1P6tUt8JPsal9jTtnJ3bmJ6dTUzH5Tzxis6OPxEmc+ENV5/6b2n/wAeqX/iodhH/CH6r0/572n/AMerF4Wtf4TeMJ22LCiIHnYPriop2TeNhXGOxqq0PiNhj/hENU/7/wBp/wDHqYbbxJ/0KOqf9/7T/wCPVSwlX+UlwntYvl18rlh0HeqdyyHbhl796Y9t4kZNo8I6pn/rvaf/AB6s/UV13TdOuL+88LalFa2sTTTSedbHaijJOBLk8A9KqOEqroROnUfQtEtngnHtT43fzB8zfnUaWPiXYP8AiktT/wDAi1/+PU9LLxKrAnwjqf8A4EWv/wAeq3h6v8pCo1OxOWbPU1GwyDxQbXxIT/yKOqf9/wC0/wDj1BtfEhBH/CI6n/4EWn/x6pWHq/ylOjPsRYXuB+NNKoT0X8qVtP8AEzDH/CI6l/4EWv8A8epBp/iYD/kUtS/8CLX/AOPVf1er2I9hU/lFC8/d/Sh0HHyj8qeLLxKDn/hEdT/8CLX/AOPVXtG1zU4GntPC2pyRpLJCW862GHjco45m7MpH4UvYVf5R+wn2EYYfgYoyfU1I2neJi2f+ES1L/wACLX/49SHTPE//AEKWpf8AgRa//Hqv2FTsZ/V6vYaD6mlIXaemcUh0vxP/ANClqX/gRa//AB6l/szxPjH/AAiWpf8AgRa//HqPq9TsP2FX+UYvfNIetP8A7L8T/wDQpal/4EWv/wAeo/svxP8A9ClqX/gRa/8Ax6n7Cp2J+r1f5QRiHHzH861LKRfJO5xnd3P0rDji16TUptPXwtqRuoIkmkj862+VHLhTnzccmN/y+lX4rLxKikHwjqfX/n4tf/j1Zzw1RrY0p0qsXsJ4tYHwZrfzD/jwn7/7Br1pP9Wv0FeQa1pvifUfD+oWEXhLUlluLaSFWa4tcAspAzibpzXr6ZCKCMHFdmBpSpxakrHoUU0tR1FFFdxsFFFFACEZBB71V0zTrfSNKs9NtQwt7SFIIgxyQqgAZPfgVk+N7+607wrPJZTGC4mmgtlmABMXmzJGWGe4Dkj3xVHR0n0XxxNoaX97d2M2mi8UXlw07xSLJsbDsScMCDjOAVOMZoA6+iiigAooooAKKK4/4hQTRaPDqlvqF/bTW93aIqW9y0aOHuYlbcFxu+ViOeOaAOls9Ot7G5vriEMJL6cTzZOcuI0j49PljWrdcbqEE/iHxxeaTJqV/Z2djp0MyLZXDQs8sryDeSvJCiMYB4yTkGtPwVqd1rHg3S769cSXUkW2WQDG9lJUtjtnGfxoA36KKKACiiigAqpJp1vLq1vqbBvtNvBJAhzxskZGbj6xr+tZ/iS0sZLL7bqeqXthZWis8jW129uCDjlihDHGOAD36HiuUiuNbn0XwvpN9eX9s2q6hMjzM+y6FqiyyxozDlZGVIwSMHr3oA9Gorl/Cctxb6r4g0SW6nuoNOuY/s8txIZJAkkSvsZjy2CTgnJwRXUUAFFFFABRRVe+theWUtu0k8YdcFreQxyD/dYcg0AMvNOt765sbiYMZLGczw4OMOY3j59flkardeRy6tqlhc6jplvPrGmJdSWFvDDqlx59zD50/lyTI5Zxt2kADecMM4HGev0QT6R41vtBW9vLuxawivYvtc7TPE5d0YB2JYqdqnBPBBxQB1tFFFABRRRQAVU1PTrfV9KvNNugxt7uF4JQpwSrAg4Pbg1Zd1jjZ3YKqgkk9hXk8Pjy11DxppOpx+Irf7HcpcpFpkd6uAqqPKMiA/612JwDyPlGMg5APWQMAAdqWvNNJm1GzsPBviCTV765uNcmiS+glnLQsJoWkGyM8JsIGNoHAOc16XQAUUUUAFFFFABVTTtOt9Ltnt7YMI3nlnO45+eSRpG/8eY1wd1DqWg6/dazrUeoT6Y+pqYp4NbnC28blEQNbAhCm488nhuhxVZ7zUT4dm8ZjVb4Xaau0a2nnt9n8hbv7P5Ri+7kqM7sbtx60AeoUUUUAFFFFABRRXn/AIqvtXv/ABxB4esILqWCLTvt0iW9+1lvJkKDdKoLcbeFXGS3JwKAO1j063i1a41NQ32m4gjgc542Rs7Lx9ZG/SrdeeQaj/wk1z4Z0u2vNTs9Pns7q5uALpluHeF0i8tpVO7hnbJB52jmt7wVd3U+mX1rd3Ely+n6hcWaTynLyIjfKWPdgCAT3xmgDpaKKKACiiigAooooAp6tpdrrWl3GnXqF7eddrBWKkc5BBHQggEHsRVLR/DcOk3lxfPe3uoX08axNc3rqziNclUG1VAGST0ySeSa2aKACiiigAooooAKwfE3hhfE9tHbTatqNlAjq7R2hiAdldXUnejHhlBGMe+a3qKAObu/B8d08E/9tatDfx25tpL2GSNZZ4id21/k28EnBVQRk4PNbenafa6Tpttp9lEIrW2jWKJBztUDA+tWaKACiiigAooooAwfEfhePxJJYPLqd/Z/YZTNGtsYirvxhmWRHBK8444JJ64wt14YS/0mCzvdU1C4uLecXEF+TGk8UgzgjYgXoSMFSCCc5rdooAzNE0O30OCdYpri4nuZjPcXNywaSZyAMsQAOAoAAAAA6Vp0UUAFFFFABVa/tGvrKS2W6uLVnxia3YCRMEHjII7dweKs0UAcw3gbT7iK9/tG8v8AUbm7iSJrq5lUSRqjb02bFVVw+GyB1Azmr+jeHYNHubq7a8vL++ugiS3V46s5RM7UG1VUKNzHgdSSc1sUUAFFFFABRRRQAday7nQLG61jT9TZCs1iJRGqBQrbwAdwxk4wMcitSigDmdN8Eafpl7aTJd301vYs7WNlNKrQ2pYEEoAoY4DEDcWwDxiumoooAKKKKACiiigDnbrwjFf3nmX+r6pdWguBciwllTyAwbco4QMVBwQpYjgVG3gfTm1Frg3V99ka7F82neav2cz53byNu77w3bd23POK6aigAooooAKKKKACsXV/DcGq38GoR317p99FG0IuLN1VmjYglGDKwIyARxkHoRW1RQBzkvgvTv7P022sp7ywk00MLa6tpB5qh/v5Lhg27qcg5PPWtTRtHtdC01LG08xkDNI8krbnkdmLM7HuxJJNX6KACiiigD//2Q==",
            "text/plain": [
              "<Figure size 640x480 with 1 Axes>"
            ]
          },
          "metadata": {},
          "output_type": "display_data"
        }
      ],
      "source": [
        "plt.imshow(ndvi_image)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "EMk6nKrXxPRZ"
      },
      "source": [
        "By following this process of selecting relevant bands, and then color mapping them, you can inject multi-spectral information into your prompt and use Gemini for zero shot remote sensing."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "62tVhIpbxTel"
      },
      "source": [
        "# What's next\n",
        "\n",
        "\n",
        "To learn more about how to use Gemini for remote sensing, [check out the original paper.](https://arxiv.org/pdf/2509.19087)"
      ]
    }
  ],
  "metadata": {
    "colab": {
      "name": "multi_spectral_remote_sensing.ipynb",
      "toc_visible": true
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}