1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "UvTPRErEO2cl"
},
"source": [
"##### Copyright 2025 Google LLC."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "LCJL7_hQO3jW"
},
"outputs": [],
"source": [
"# @title Licensed under the Apache License, Version 2.0 (the \"License\");\n",
"# you may not use this file except in compliance with the License.\n",
"# You may obtain a copy of the License at\n",
"#\n",
"# https://www.apache.org/licenses/LICENSE-2.0\n",
"#\n",
"# Unless required by applicable law or agreed to in writing, software\n",
"# distributed under the License is distributed on an \"AS IS\" BASIS,\n",
"# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
"# See the License for the specific language governing permissions and\n",
"# limitations under the License."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "sP8PQnz1QrcF"
},
"source": [
"# Gemini API: Sentiment Analysis"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "bxGr_x3MRA0z"
},
"source": [
"<a target=\"_blank\" href=\"https://colab.research.google.com/github/google-gemini/cookbook/blob/main/examples/json_capabilities/Sentiment_Analysis.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" height=30/></a>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ysy--KfNRrCq"
},
"source": [
"You will use the Gemini to extract sentiment scores of reviews."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Ne-3gnXqR0hI"
},
"outputs": [],
"source": [
"%pip install -U -q \"google-genai>=1.0.0\""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "eomJzCa6lb90"
},
"source": [
"## Configure your API key\n",
"\n",
"To run the following cell, your API key must be stored it in a Colab Secret named `GOOGLE_API_KEY`. If you don't already have an API key, or you're not sure how to create a Colab Secret, see [Authentication](https://github.com/google-gemini/cookbook/blob/main/quickstarts/Authentication.ipynb) for an example."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "v-JZzORUpVR2"
},
"outputs": [],
"source": [
"from google.colab import userdata\n",
"from google import genai\n",
"\n",
"GOOGLE_API_KEY = userdata.get('GOOGLE_API_KEY')\n",
"client = genai.Client(api_key=GOOGLE_API_KEY)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "R3EUoLgJNfe7"
},
"source": [
"## Example"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "cblGFW3VwzyO"
},
"source": [
"Start by defining how you want your JSON to be returned and which categories you would like to classify an item by. After that, go ahead and define some examples. In this case, you are trying to classify reviews as positive, neutral, or negative."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "QGdJnd0AOKbu"
},
"outputs": [],
"source": [
"import enum\n",
"from typing_extensions import TypedDict\n",
"\n",
"\n",
"class Magnitude(enum.Enum):\n",
" WEAK = \"weak\"\n",
" STRONG = \"strong\"\n",
"\n",
"\n",
"class Sentiment(TypedDict):\n",
" positive_sentiment_score: Magnitude\n",
" negative_sentiment_score: Magnitude\n",
" neutral_sentiment_score: Magnitude\n",
"\n",
"\n",
"system_instruct = \"\"\"\n",
"Generate each sentiment score probability (positive, negative, or neutral) for the whole text.\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "yRq9PGpVQLUK"
},
"outputs": [],
"source": [
"negative_review = \"This establishment is an insult to the culinary arts, with inedible food that left me questioning the chef's sanity and the health inspector's judgment.\"\n",
"positive_review = \"This restaurant is a true gem with impeccable service and a menu that tantalizes the taste buds. Every dish is a culinary masterpiece, crafted with fresh ingredients and bursting with flavor.\"\n",
"neutral_review = \"The restaurant offers a decent dining experience with average food and service, making it a passable choice for a casual meal.\""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "z0yHqEJRwp_U"
},
"source": [
"Take a look at each of the probabilities returned to see how each of these reviews would be classified by the Gemini model."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "RGgPk_Lk-EV5"
},
"source": [
"Helper function to generate content from sentiment llm:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "oCBC8pNy-Ply"
},
"outputs": [],
"source": [
"from google.genai import types\n",
"\n",
"def generate_content(review):\n",
" MODEL_ID = \"gemini-3-flash-preview\" # @param [\"gemini-2.5-flash-lite\", \"gemini-2.5-flash\", \"gemini-2.5-pro\", \"gemini-2.5-flash-preview\", \"gemini-3-pro-preview\"] {\"allow-input\":true, isTemplate: true}\n",
" return client.models.generate_content(\n",
" model=MODEL_ID,\n",
" contents=review,\n",
" config=types.GenerateContentConfig(\n",
" system_instruction=system_instruct,\n",
" response_mime_type=\"application/json\",\n",
" response_schema=Sentiment,\n",
" )\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Tz0cDFyD9uUT"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'negative_sentiment_score': <Magnitude.STRONG: 'strong'>,\n",
" 'neutral_sentiment_score': <Magnitude.WEAK: 'weak'>,\n",
" 'positive_sentiment_score': <Magnitude.WEAK: 'weak'>}\n"
]
}
],
"source": [
"from pprint import pprint\n",
"\n",
"response = generate_content(negative_review)\n",
"pprint(response.parsed)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "bMW3QmYy9uUT"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'negative_sentiment_score': <Magnitude.WEAK: 'weak'>,\n",
" 'neutral_sentiment_score': <Magnitude.WEAK: 'weak'>,\n",
" 'positive_sentiment_score': <Magnitude.STRONG: 'strong'>}\n"
]
}
],
"source": [
"response = generate_content(positive_review)\n",
"pprint(response.parsed)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "QTjUYa4J9uUT"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'negative_sentiment_score': <Magnitude.WEAK: 'weak'>,\n",
" 'neutral_sentiment_score': <Magnitude.STRONG: 'strong'>,\n",
" 'positive_sentiment_score': <Magnitude.WEAK: 'weak'>}\n"
]
}
],
"source": [
"response = generate_content(neutral_review)\n",
"pprint(response.parsed)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "AGOx4_7r1uN6"
},
"source": [
"## Summary\n",
"You have now used the Gemini API to analyze the sentiment of restaurant reviews using structured data. Try out other types of texts, such as comments under a video or emails.\n",
"\n",
"Please see the other notebooks in this directory to learn more about how you can use the Gemini API for other JSON related tasks."
]
}
],
"metadata": {
"colab": {
"name": "Sentiment_Analysis.ipynb",
"toc_visible": true
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
}
},
"nbformat": 4,
"nbformat_minor": 0
}