1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299{
"cells": [
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [],
"source": [
"# Problem Set 3: Simulating the Spread of Disease and Virus Population Dynamics \n",
"\n",
"import random\n",
"import pylab\n",
"from numpy import mean\n",
"\n",
"#random.seed(0)\n",
"\n",
"''' \n",
"Begin helper code\n",
"'''\n",
"\n",
"class NoChildException(Exception):\n",
" \"\"\"\n",
" NoChildException is raised by the reproduce() method in the SimpleVirus\n",
" and ResistantVirus classes to indicate that a virus particle does not\n",
" reproduce. You can use NoChildException as is, you do not need to\n",
" modify/add any code.\n",
" \"\"\"\n",
"\n",
"'''\n",
"End helper code\n",
"'''\n",
"\n",
"#\n",
"# PROBLEM 1\n",
"#\n",
"class SimpleVirus(object):\n",
" \"\"\"\n",
" Representation of a simple virus (does not model drug effects/resistance).\n",
" \"\"\"\n",
" def __init__(self, maxBirthProb, clearProb):\n",
" \"\"\"\n",
" Initialize a SimpleVirus instance, saves all parameters as attributes\n",
" of the instance. \n",
" maxBirthProb: Maximum reproduction probability (a float between 0-1) \n",
" clearProb: Maximum clearance probability (a float between 0-1).\n",
" \"\"\"\n",
" self.maxBirthProb = maxBirthProb\n",
" self.clearProb = clearProb\n",
"\n",
" def getMaxBirthProb(self):\n",
" \"\"\"\n",
" Returns the max birth probability.\n",
" \"\"\"\n",
" return self.maxBirthProb\n",
"\n",
" def getClearProb(self):\n",
" \"\"\"\n",
" Returns the clear probability.\n",
" \"\"\"\n",
" return self.clearProb\n",
"\n",
" def doesClear(self):\n",
" \"\"\" Stochastically determines whether this virus particle is cleared from the\n",
" patient's body at a time step. \n",
" returns: True with probability self.getClearProb and otherwise returns\n",
" False.\n",
" \"\"\"\n",
" if self.getClearProb() >= random.random():\n",
" return True\n",
" else:\n",
" return False\n",
" \n",
" \n",
" def reproduce(self, popDensity):\n",
" \"\"\"\n",
" Stochastically determines whether this virus particle reproduces at a\n",
" time step. Called by the update() method in the Patient and\n",
" TreatedPatient classes. The virus particle reproduces with probability\n",
" self.maxBirthProb * (1 - popDensity).\n",
" \n",
" If this virus particle reproduces, then reproduce() creates and returns\n",
" the instance of the offspring SimpleVirus (which has the same\n",
" maxBirthProb and clearProb values as its parent). \n",
"\n",
" popDensity: the population density (a float), defined as the current\n",
" virus population divided by the maximum population. \n",
" \n",
" returns: a new instance of the SimpleVirus class representing the\n",
" offspring of this virus particle. The child should have the same\n",
" maxBirthProb and clearProb values as this virus. Raises a\n",
" NoChildException if this virus particle does not reproduce. \n",
" \"\"\" \n",
" if (self.getMaxBirthProb() * (1 - popDensity)) >= random.random():\n",
" return SimpleVirus(self.getMaxBirthProb(), self.getClearProb())\n",
" else:\n",
" raise NoChildException\n",
"\n",
"\n",
"class Patient(object):\n",
" \"\"\"\n",
" Representation of a simplified patient. The patient does not take any drugs\n",
" and his/her virus populations have no drug resistance.\n",
" \"\"\" \n",
"\n",
" def __init__(self, viruses, maxPop):\n",
" \"\"\"\n",
" Initialization function, saves the viruses and maxPop parameters as\n",
" attributes.\n",
"\n",
" viruses: the list representing the virus population (a list of\n",
" SimpleVirus instances)\n",
"\n",
" maxPop: the maximum virus population for this patient (an integer)\n",
" \"\"\"\n",
" self.viruses = viruses\n",
" self.maxPop = maxPop\n",
"\n",
"\n",
" def getViruses(self):\n",
" \"\"\"\n",
" Returns the viruses in this Patient.\n",
" \"\"\"\n",
" return self.viruses\n",
"\n",
"\n",
" def getMaxPop(self):\n",
" \"\"\"\n",
" Returns the max population.\n",
" \"\"\"\n",
" return self.maxPop\n",
"\n",
"\n",
" def getTotalPop(self):\n",
" \"\"\"\n",
" Gets the size of the current total virus population. \n",
" returns: The total virus population (an integer)\n",
" \"\"\"\n",
" return len(self.viruses)\n",
"\n",
"\n",
" def update(self):\n",
" \"\"\"\n",
" Update the state of the virus population in this patient for a single\n",
" time step. update() should execute the following steps in this order:\n",
" \n",
" - Determine whether each virus particle survives and updates the list\n",
" of virus particles accordingly. \n",
" \n",
" - The current population density is calculated. This population density\n",
" value is used until the next call to update() \n",
" \n",
" - Based on this value of population density, determine whether each \n",
" virus particle should reproduce and add offspring virus particles to \n",
" the list of viruses in this patient. \n",
"\n",
" returns: The total virus population at the end of the update (an\n",
" integer)\n",
" \"\"\"\n",
" \n",
" surviving_viruses = []\n",
" for virus in self.getViruses():\n",
" if not virus.doesClear():\n",
" surviving_viruses.append(virus)\n",
" \n",
" # print('printing surviving viruses list in .update():', surviving_viruses)\n",
" self.viruses = surviving_viruses\n",
" popDensity = self.getTotalPop() / self.getMaxPop()\n",
" # print('printint getTotalPop', self.getTotalPop())\n",
" # print('printint getTotalPop', self.getMaxPop())\n",
" # print('printing popDensity:', popDensity)\n",
" virus_offspring = []\n",
" \n",
" for virus in self.getViruses():\n",
" try:\n",
" virus_offspring.append((virus.reproduce(popDensity)))\n",
" except NoChildException:\n",
" continue\n",
" \n",
" self.viruses += virus_offspring\n",
" \n",
" return self.getTotalPop()\n",
"\n",
"#\n",
"# PROBLEM 2\n",
"#\n",
"def simulationWithoutDrug(numViruses, maxPop, maxBirthProb, clearProb,\n",
" numTrials):\n",
" \"\"\"\n",
" Run the simulation and plot the graph for problem 3 (no drugs are used,\n",
" viruses do not have any drug resistance). \n",
" For each of numTrials trial, instantiates a patient, runs a simulation\n",
" for 300 timesteps, and plots the average virus population size as a\n",
" function of time.\n",
"\n",
" numViruses: number of SimpleVirus to create for patient (an integer)\n",
" maxPop: maximum virus population for patient (an integer)\n",
" maxBirthProb: Maximum reproduction probability (a float between 0-1) \n",
" clearProb: Maximum clearance probability (a float between 0-1)\n",
" numTrials: number of simulation runs to execute (an integer)\n",
" \"\"\"\n",
" #Ensuring numTrials stays under 100 (as directed in problem outline)\n",
" if numTrials > 100:\n",
" raise Exception('numTrials must be less than 100')\n",
" \n",
" #creating initial viruses\n",
" virus_list = []\n",
" for i in range(numViruses):\n",
" virus_list.append(SimpleVirus(maxBirthProb, clearProb)) \n",
" \n",
" #creating patient list\n",
" patient_list = []\n",
" for patient in range(numTrials):\n",
" patient_list.append(Patient(virus_list, maxPop))\n",
" \n",
" #creating x and y values to be plotted\n",
" timesteps = range(300) # x-values\n",
" avg_pop_per_timestep = [] # y-values\n",
" \n",
" #creating list of avg population size per timestep\n",
" for timestep in timesteps:\n",
" virus_pops_per_timestep = []\n",
" for patient in patient_list:\n",
" patient.update()\n",
" virus_pops_per_timestep.append(patient.getTotalPop())\n",
" avg_pop_per_timestep.append(mean(virus_pops_per_timestep))\n",
" \n",
" # print(avg_pop_per_timestep)\n",
" # pylab.plot(timesteps, avg_pop_per_timestep)\n",
" pylab.plot(avg_pop_per_timestep, label = \"SimpleVirus\")\n",
" pylab.title(\"SimpleVirus simulation\")\n",
" pylab.xlabel(\"Time Steps\")\n",
" pylab.ylabel(\"Average Virus Population\")\n",
" pylab.legend(loc = \"best\")\n",
" pylab.show()\n",
" \n",
"\n",
"#simulationWithoutDrug(100, 1000, abs(random.random()-0.5), random.random(), 100)"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAA980lEQVR4nO3deXxU1fnH8c83ISSEnRCQfUfZFDDiiuKK4oK74lK3Vtva1tZaq6222pbWtfVnW22xWmjVUtqqRRRkqbiBICD7vhMIIYQ1LFmf3x/3EgMkYQJMJsvzfr3mlZkzd3nuXJhnzjn3niMzwznnnAOIi3UAzjnnqg5PCs4554p5UnDOOVfMk4JzzrlinhScc84V86TgnHOumCcFVykk3SppYpS2PVLSr47TthZJGnQ8tnWU+x8oaVmUtv2EpNePYf2YfjaucnhScMeNpHMkTZO0U9I2SZ9JOg3AzN4ws0tiHN8Hkn5RSvlQSZsl1TGzXmY2NQbhAWBmn5jZibHa/wGlJdpYfzaucnhScMeFpEbAOOD3QDOgDfAkkBvLuA4xErhdkg4pvx14w8wKyltZUp1oBeZcVeFJwR0v3QHM7B9mVmhm+8xsopnNB5B0p6RPDywsySR9W9IKSbsl/VJSF0nTJe2SNEZS3XDZQZLSJf1E0lZJayXdWlYgkq6QNFfSjrDmcnL41jsECWtgiWWbAlcAfwtfr5V0Ufj8CUn/lvS6pF3AnYf+gj4QW4nXP5a0MTymZZIuLCPGIZIWh8ttlPRQGdtbK+lHkuZL2iPpVUktJY0P150cHsNh6x56PKXE8K+whrRT0seSeoXl9wK3Ag9LypH0bimfTaKkFyRtCh8vSEo85Hz9UNIWSRmS7irrfLmqxZOCO16WA4WSRkm67MAX1RFcCpwKnAE8DIwg+DJqB/QGhpVY9gSgOUEN5A5ghKTDmlkk9QdeA+4DUoA/A2MlJZrZPmAM8LUSq9wILDWzeWXEOBT4N9AEeKO8gwnj+Q5wmpk1BAYDa8tY/FXgvnC53sD/ytn0dcDFBIn3SmA88BOCzyMO+F55cZVjPNANaAHMITw+MxsRPn/GzBqY2ZWlrPtTgvPWFzgFGAA8VuL9E4DGBOfrHuCPEf6bcDHmScEdF2a2CzgHMOAVIEvSWEkty1ntaTPbZWaLgIXARDNbbWY7Cb6w+h2y/ONmlmtmHwHvEXyhH+obwJ/NbEZYYxlF0IR1Rvj+KOAGSfXC118Ly8oy3czeMbOiMKmUpxBIBHpKSjCztWa2qoxl88PlGpnZdjObU852f29mmWa2EfgEmGFmX5pZLvA2h39OETGz18xsd7idJ4BTJDWOcPVbgV+Y2RYzyyJoKry9xPv54fv5ZvY+kAPEvK/EHZknBXfcmNkSM7vTzNoS/PptDbxQziqZJZ7vK+V1gxKvt5vZnhKv14XbP1QH4Idh09EOSTsIah6twxg/BbKAoZI6A6cBb5YT44Zy3juIma0Evk/wBbtF0mhJpcUIwa//IcA6SR9JOrOcTVfkc4qIpHhJT0laFTaNrQ3fah7hJloTnIMDDj0f2Yf00ew9mjhd5fOk4KLCzJYSdOz2Pk6bbCqpfonX7YFNpSy3ARhuZk1KPJLN7B8llvkbQQ3hdoLaSWYp2zng0GGE9wDJJV6fcNDCZm+a2TkEycmAp0vdqNkXZjaUoOnmHYJmrWN1UGyS4oHUMpa9haBp7CKCZp6OB1Y7EOIR9rWJ4BgPKOt8uGrGk4I7LiSdFHYstg1ftyPoE/j8OO7mSUl1JQ0k6Bz+VynLvAJ8U9LpCtSXdLmkhiWW+RvBl+E3KL/pqDRzgSGSmkk6gaBmAAR9CpIuCDtc9xP8ii88dAPhMdwqqbGZ5QO7SlvuKCwHksLjTSBo408sY9mGBM1q2QSJ5NeHvJ8JdC5nX/8AHpOUKqk58DPgqO+BcFWHJwV3vOwGTgdmSNpDkAwWAj88TtvfDGwn+DX6BvDNsDZyEDObRfBl/4dw+ZXAnYcssxaYBtQHxlYwjr8D8wiaWyYC/yzxXiLwFLA1jLcFQYdwaW4H1oZNN98EbqtgHIcJ+2K+DfwF2EhQc0gvY/G/ETT5bAQWc3jyfpWgz2OHpHdKWf9XwCxgPrCAoKP6uNxA6GJLPsmOq+oU3EX7ethX4ZyLIq8pOOecK+ZJwTnnXDFvPnLOOVfMawrOOeeKVesBvpo3b24dO3aMdRjOOVetzJ49e6uZlXoPS7VOCh07dmTWrFmxDsM556oVSevKes+bj5xzzhXzpOCcc66YJwXnnHPFqnWfQmny8/NJT09n//79sQ6l1klKSqJt27YkJCTEOhTn3FGqcUkhPT2dhg0b0rFjR3TYrIsuWsyM7Oxs0tPT6dSpU6zDcc4dpRrXfLR//35SUlI8IVQySaSkpHgNzblqrsYlBcATQoz45+5c9Vcjk4Jz7ujs2JvHjr15sQ6jRissMv7++TqmrdpKVRxmyJNClAwfPpxevXpx8skn07dvX2bMmMHXv/51Fi9efFy236BB+TMbDho0iA8++OCgshdeeIFvf/vbjB07lqeeeuq4xOGqv0WbdvLmjPU89K95nPGbKVz+4qfs2p8f67BqrBEfr+bxdxZyyysz+L8pK/jf0swqlYhrXEdzVTB9+nTGjRvHnDlzSExMZOvWreTl5fGXv/yl0mIYNmwYo0ePZvDgwcVlo0eP5tlnn2XgwIFcddVVh61TUFBAnTr+T6KmyisoYmtOLic0SmJPXgEJ8XE8MXYRo78IpqFulFSHi3q0ZPzCzVzw3FQGndiC5244pdRtmRmvfbaW6au28vth/alXN74yD6Xa+nx1Nr+btJzBvVpSt048L0xeAUCn5vV55vqTmbV2O+d0bU6fto0B2L4nj/qJdahbp/J+v0f1G0DSWoIZuQqBAjNLk9SMYLaqjgSzV91oZtvD5R8F7gmX/56ZfVDKZqu8jIwMmjdvTmJiMBNi8+bBXOiDBg3iueeeIy0tjQYNGnD//fczefJkmjZtyq9//Wsefvhh1q9fzwsvvMBVV13FyJEjefvtt8nNzWXNmjXccsst/PznPz9sf88++yxjxowhNzeXa665hieffJLrr7+exx57jNzcXBITE1m7di2bNm3inHPOYeTIkcyaNYs//OEP3HnnnTRr1owvv/yS/v3707BhQxo0aMBDDz0EQO/evRk3bhypqanceOONpKenU1hYyOOPP85NN91UeR/qUdqyaz9Tl2Vx3omptGyUFOtwYmbnvnyueekzVmftYUDHZqRv38v+giK27cnjzrM68o1zO9OyYSJ14uN4Y8Y6Xv98Pf+enc4PLu5Omyb1WLt1D89PWs6KzN10SElm4459LNy4C4Bfv7+EX159vKbirrnWZ+/lnpFf0D4lmaeuPZn4eFFUZJx0QkNGTV/LDX+aDsDv4uO4qGcLzuicwtPjl5LaMJF2zZK56pTW3JDWDoB12XuoVzeeFg2P/7/pyvhZeL6ZbS3x+hFgipk9JemR8PWPJfUEbgZ6Aa2ByZK6m9lRz1375LuLWLxp17HEfpierRvx8yt7lbvMJZdcwi9+8Qu6d+/ORRddxE033cR555130DJ79uxh0KBBPP3001xzzTU89thjTJo0icWLF3PHHXcU/5KfOXMmCxcuJDk5mdNOO43LL7+ctLS04u1MnDiRFStWMHPmTMyMq666io8//phzzz2XAQMGMGHCBIYOHcro0aO56aabSu0MXr58OZMnTyY+Pp4nnnii1GOaMGECrVu35r333gNg586dFfnYYmLxpl1c9/I09uUX0jm1Pt8e1JUzOjfjv3M3sTevgOS6dUhKiGf7njzO7tqcM7ukRDWeLbv2Ex8nUhqUNW1y6fILi/hw6Ra6tGjAr8Yt5hsDO3NW1+YRr79zbz4PjpnLuuy93HNOJ179dA1JCXE0rpfAgI7NePyKnsTHffXv4tbTOzCwayrnPvshv3x3Me1Tkvn37HTyCoro264Jq7P20LxBIj8d0oONO/Yxctpa7jirA11bfDUNdmGRsTUnt9IS8c69+Yz4ZBWnd0qhTpxIqBPHaR2bVcq+I/Wb8UsoMhh19wCa1q8LwB9v7Q/A187qyNtz0unSogHvztvEx8u38v6CzbRunERy3Tos3rSLz1dn0zS5LnFx8MMx8zilXRNG3jXguMcZi7aCocCg8PkoYCrw47B8tJnlAmskrQQGANNjEOMxadCgAbNnz+aTTz7hww8/5KabbjqsDb9u3bpceumlAPTp04fExEQSEhLo06cPa9euLV7u4osvJiUl+LK69tpr+fTTTw9LChMnTqRfv34A5OTksGLFCs4999ziJqQDSeG1114rNd4bbriB+Pjyq/99+vThoYce4sc//jFXXHEFAwcOrPDncrxs2LaXlo2SmLwkk7O7NufDpVtIrhvPRT1a8v7CDOas28H6bXuYl76Thkl1+M21fXjkrfk89K95SGAG8XGisOirTr6XP1rFr67uzc2ntePTlVtJbZjISSc0Om4xPz1hKS9PXUV8nLjv3M4M6dOK3m0aH3G9Lbv3c+drX7A4Y1dxzDPWbOM7F3Tl8j6t6JBSv9z1i4qM6/80jVVZOfzsip7ceXYnTmnXhBYNE+nXvglCByWEA9qnJNO/fRMmLNpMnKB9s2RG3jWAjs0P3l92Ti7/mLmeVz5eQ1rHpvz1s7U8fkVPnnx3ESu25DDmvjM5tUPTiD6jgsIi6sQf3ExiZkhi5958/m/KCk5q1ZBr+7U5aLms3blc89JnpG/fxztfbiJ7Ty7784vo06Yxp3Zoyq2nt6dby4aH7q5SvTFjHeMXbubBsOZ1qMb1Erjz7OD+noHdUskvLGLc/E2c2r4Z7VOS2bE3j6F//Iyv/y0YALRz8/o8cYQfp0cr2knBgImSDPizmY0AWppZBoCZZUhqES7bhoMnD08Pyw4i6V7gXoD27duXu/Mj/aKPpvj4eAYNGsSgQYPo06cPo0aNOuj9hISE4l/tcXFxxU1NcXFxFBQUFC936C/7Q1+bGY8++ij33XffYTFcffXVPPjgg8yZM4d9+/bRv3//UmOtX/+r/+h16tShqKio+PWB+w66d+/O7Nmzef/993n00Ue55JJL+NnPfnbEz+F4+8fM9Tz61gLaN0tm/ba9JCXEsT8/iHfQialMXZZFvYR4OqQkc9IJDXnw4u70a9+U809swYbte3l56irOP6kFV57SCjPYl1eIBA+Mnsujby3gxSkryNi5n8Q6cfzhlv5c3LNlRHEVFRnLt+xmb14hW3blkr0nl1sGtEcS783P4OWpqxjatzVm8NLUVfzpo1W8972B9Gh1eOIpLDI+XLqFUzs05duvz2H11hx+NPhE/jt3I/ec04n/zN7IMxOW8cyEZfxiaC++dmbHg9Y/8EVaUFjErHXbWbElh2euP5kbw6aHq05pHdExPXfDKazbtpeBXZsTJxFXSvJIaZDIjWnteH3GOv4zJ52CImPYK5/TvEFdUurX5eujviBO4uKeLbnvvC6M/mI99w7sfFhtadGmndw84nO+eV4XWjZKYnCvluTkFnDZ/31CQnwcufmF7Nof/L9YnbWHRy47CTPjL5+s4fUZ68jOyePeczsz4uPVANxzTieWZOzizZnrGf3Fen53Y18u69MqouM+FhMWZvDS1FX0b9+Uhy89keS6dZi2ais/fXshF5zUgm+e1yWi7STEx3FNv6+mJG+SXJcJD5zLlKWZ1ImLY2C35tRPjM7Xd7STwtlmtin84p8kaWk5y5Z2kfth12uFiWUEQFpaWtW7ngtYtmwZcXFxdOvWDYC5c+fSoUMHFi5cWOFtTZo0iW3btlGvXj3eeeedw37tDx48mMcff5xbb72VBg0asHHjRhISEmjRogUNGjRg0KBB3H333QwbNiyi/XXs2JFx48YBMGfOHNasWQPApk2baNasGbfddhsNGjRg5MiRFT6WY7Uuew+/GreYNk3qsWH7XoYNaM+8DTuCL8o56UxdlsUJjZL4+OHzD+uYa5ycQOPkxsXV9QOSEoIa0l/uSOPFKStYm72XAZ2a8e/Z6XznzTn88Zb+tG1Wjz25BTRJrkv7Zsn85ZM17Mkt4Nvnd2Hzzv0UFhk/H7uIaauyD9r2lCVbSIgXn6/eRt92TXjuhlNIiI/jh5d05+LffcybM9aX2hb/xox1/Oy/i0iIFwVFxos39+PKU1pz//ldAbjptPakb9/LY+8s5FfjltC1RQM+X5XNhT1a0jS5LsNe+ZzWTZJYtnk3BiTXjeeKkyv+hdg5tQGdU8u/yg3gkctOIiE+jvnpOxh0Yiojp61j5F2nkZWTy8/+u5DerRvzz1kbePvLjeQWBE1h3Vs2JE7iw6VbQNC8QSK79xfw7AfLAJi9rh1FRbA3t5ArT2lJnThx04B2jJq2lpHT1vD1gZ2YtDiT4e8v4ZR2Tfjl0N6c0TmFsXM30btNYx6/oicQ1CLu+/ssvjf6S35bZHRISSalQWKpv9aP1Wcrt/KtN+bQrmkyI6etxcw4s0sKz09cTtum9Xjp1v7H1GFcr248V5wcWUI/FlFNCma2Kfy7RdLbBM1BmZJahbWEVsCWcPF0oF2J1dsCm6IZX7Tk5OTw3e9+lx07dlCnTh26du3KiBEjuP766yu8rXPOOYfbb7+dlStXcssttxzUdARB/8WSJUs488wzgaDp6vXXX6dFi6ACNmzYMK699lpGjx4d0f6uu+46/va3v9G3b19OO+00unfvDsCCBQv40Y9+RFxcHAkJCbz88ssVPpZjsT+/kG++Poc68XGM+eaZNK6XQIMSv5RaN6nHtFXZ3H1Ox6P6jxd8WZ9Y/Pqy3icw9A9fVddL8+ePV5FfGPwuiY8Tj13eg07N6xMfJ8bO28TYuZtoklyX/MIinr8xSAgAHVLqc0WfVoyZtYEN2/fykyE9+M+cdOZv2Enmrv1s35tH95YNSG2YyH3nduHc7ofPhdK2aTK/vbEvQ//4Kbe8MgOAv3y6hnoJ8RQUGRk799OtZUPmbtjB1X3bkFw3ev/V6yfW4WdX9ix+ff/5XYtrtJ88fAEAf/jfCp6buJyvndmBSYszmZ++k5zcAi7u1ZLMXfv5bGU2D17cnfqJdVi4cSf/mBlcEXX32Z0O2nbT5Lq8O28TV//xMzbt2MfAbs0ZedeA4iawsd89+6BjTW2YyF/vHMC1L3/Gd//xZXF5Sv26NE5O4LLeJ5DWoRk9Wzc65v6PF6es4IRGSUz8wbk8MXYRo6avY9T0ddSJE3+67dTiHyBVXdTmaJZUH4gzs93h80nAL4ALgewSHc3NzOxhSb2ANwkSR2tgCtCtvI7mtLQ0O3SSnSVLltCjR4+oHFNlK3mVUHURrc//5amreHrCUl67M40LTiq9SWfhxp30aNWo1Dbyo7Fzbz6z129jf34RyXXj2bxzP5t37ad368Zs3LGPRZt2ckbnFOLjRJfUBgf1EZgZ+/ILqRsfx57cQhonHzxI4IrM3fz6/SVMW5Vd3LfRs3UjkhLimbV2G298/YyIOr637NrPk+8uDvpWlm0hXuI7F3QtjmXt1j2kNkyMWlNDRWTtziW14eGd7EVFxhdrt5HWsRnxcWLX/nx+9K959GnTmK8P7HzYl+n/lmbyzIRl9O/QlJ8M6XHQj4Oy7M0rYM66HezNK2B55m427tjHhm37mL46+PybJicw+cHzWJu9h8IiOK1jU5Zn5vDhsi2c07U5iXXiaJycUHy1T9buXP41ewOtGidxWe9WzN2wg5tHfM5jl/fg6wM7s3NfPq9+spqzujanW4sGFb64INokzTaztFLfi2JS6Ay8Hb6sA7xpZsMlpQBjgPbAeuAGM9sWrvNT4G6gAPi+mY0vbx+eFKqeaHz+e3ILOOfp/3Fy2yaMuvv4X20RS//8Yj1PjF3Mi8P6Ffdf7MktqBJf4rXBtj15fLF2G996fTZJCfHszQt+g57StjFbc/LYuGNf8bLxceLeczvzo0tO5FtvzOaDRZlAUBuJl6gTLz74/rnV4tzFJClUhpqeFKqjY/38N2zby7RVWxk3P4NOzevzkyE9eH7iMl75ZA1vf/ss+rWP7EqW6iS/sKi4acnFxq/fX8LERZv53oXdyC8s4tkPlrFzXz4v3XoqeQVFGMbUZVn8e3Y6A7s155MVW3nw4u6kdWzKi1NWMGfdDt74xulV7jLYspSXFKp+SjsKB66+cJXr0B8YRUVG5u79JMTHBe3n2/bxyGUn0bhe6fMt/Gb8Ev78UXD1SMeUZD5ZsZXsnDzGL8zg1tPb18iEAHhCqAJ+MqQHPxny1Y+ZS3u1Iisnl64tvupov7xPK4rMeGvORgb3asl953UmsU48Z3Vpzr68whpzV3eNSwpJSUlkZ2f78NmV7MB8CklJQZtrXkERX3ttBp+v3la8TJxg2qqtjCrlevfxCzL480erubZ/G67r35azuqTw9VGzeG9BBie2bMgjl51UqcfjarfgarWDf7xI4tnrT+H7F3anfUryQe/VlIQANbD5yGdei50DM69l5uTz+DsL+XBZFt8a1IXUBon0bd8EM+Pro2ZRUGh0bdmAddl7ubT3CTx62Unc8KfpFBYZ4x8YWHxj0rrsPfzpo1X84OLuUbmd37naqlb1KbjKt3TzLv5v8goaJtXhjrM6cvfIL9i9v4AfDT6Ru84+eBa2tVv38OwHy1iVlUPXFg0Yv3AzTZMT2JqTd9ANVs656Kl1fQqu8uQXFnHPyFns2p/P7v0FjJmVTtPkBN7+9tmceMLhQwt0bF7/oBvIpq/K5tVPVxMnMbRv9G/Mcc6Vz5OCOyZj525i4459vHpHGvFxYuWWHC4/uRWtGkd2x+iZXVKiPhCdcy5ynhTcUSsqMl7+aBUnndCQC05qgSQGndjiyCs656osvxbOHbXJSzJZuSWHbw3q4ld6OVdDeFJwRyWvoIjfTlpOu2b1uLwSRp90zlUOTwruqPzxw5Us3bybxy/vedgY+M656sv/N7sKyy8sYuS0tQzu1ZJLep0Q63Ccc8eRJwVXYZ+t3MrOffnccKrfU+BcTeNJwVXYuPkZNEysw8Dukc8T7JyrHvySVBexWWu3sWDjTt6ak86wAe1JrFNzxntxzgU8KbiIZOfk8rXXZrI3r5BOzev7AHXO1VBRbz6SFC/pS0njwtdPSNooaW74GFJi2UclrZS0TNLgaMfmIpO1O5ffjF/K/vxC/nRbf/557xk0TCp9+GvnXPVWGTWFB4AlQKMSZb8zs+dKLiSpJ3Az0ItgOs7JkrqXNx2ni678wiK+9focJi8JZpi6/YwOXNrb70lwriaLalKQ1Ba4HBgOPHiExYcCo80sF1gjaSXBfM3ToxmjK9vvp6xg8pJMvnleF648pRU9WzU68krOuWot2s1HLwAPA0WHlH9H0nxJr0k6MJ1WG2BDiWXSwzIXAy9MXs6L/1vJdf3b8shlJ9GrdWMfysK5WiBqSUHSFcAWM5t9yFsvA12AvkAG8PyBVUrZzGGTPUi6V9IsSbOysrKOY8QOYNGmnYxfkMELk1dwTb82PHVdn1iH5JyrRNFsPjobuCrsSE4CGkl63cxuO7CApFeAceHLdKDk3VBtgU2HbtTMRgAjIJhkJ0qx10oLN+5k6B8/o7DIaNU4ieHX9Pb5g52rZaL2P97MHjWztmbWkaAD+X9mdpukkj2V1wALw+djgZslJUrqBHQDZkYrPnewwiLjR/+eT0r9unztzA48f+MpJNf1K5adq21i8b/+GUl9CZqG1gL3AZjZIkljgMVAAXC/X3lUed7+ciNLMnbxh1v6ccXJPgOac7VVpSQFM5sKTA2f317OcsMJrlRylcTM+NNHq3nlk9X0adPYh8F2rpbzBuNabs3WPTw9YSntmiXz9HUn+xVGztVy3mhcy322KhuAF27qS6fm9WMcjXMu1rymUMtNW7mV1o2T6JiSHOtQnHNVgCeFWqygsIhpq7I5u2tzbzZyzgERJAVJ10paIWmnpF2SdkvaVRnBueh6d/4mdu7LZ7DPnuacC0XSp/AMcKWZLYl2MK7y5BcW8dKHqzixZUMuOKlFrMNxzlURkTQfZXpCqHmGv7eEFVty+MHF3YmL86Yj51wgkprCLEn/BN4Bcg8Umtlb0QrKRdeLU1Ywctpa7j67E5f29qYj59xXIkkKjYC9wCUlygzwpFANrdySw28nLeeafm346eU9Yh2Oc66KOWJSMLO7KiMQVzkmLt4MwMOXnki8Nxs55w4RydVHbSW9LWmLpExJ/wknz3HV0KTFmfRp05hWjevFOhTnXBUUSUfzXwlGMG1NMOnNu2GZq0aKioxnJizly/U7uLhny1iH45yroiJJCqlm9lczKwgfI4HUKMfljrNPVm7lpamruOLkVtx1dsdYh+Ocq6IiSQpbJd0mKT583AZkRzswd3y9PSedRkl1eP7GU2iYlBDrcJxzVVQkSeFu4EZgM8H0mdeHZa6a2JqTyweLMrn85NYk1omPdTjOuSoskquP1gNXVUIs7jjbsTePH/xzLquy9lBkxtfO7BDrkJxzVVyZSUHSw2b2jKTfE9yXcBAz+14kO5AUD8wCNprZFZKaAf8EOhLMvHajmW0Pl30UuAcoBL5nZh9U7HBcSW/N2ciHy7Lo06Yxv7q6Nz1aNYp1SM65Kq68msKBoS1mHeM+Hgi3deAb6RFgipk9JemR8PWPJfUkmMu5F8GVTpMldfcpOY/e219upFfrRrz73XNiHYpzrpoos0/BzN4Nn+41s1ElHwR3OB9ReD/D5cBfShQPBUaFz0cBV5coH21muWa2BlgJDIj4SNxBVmTuZsHGnVzb328pcc5FLpKO5kcjLCvNC8DDQFGJspZmlgEQ/j0wRGcbYEOJ5dLDsoNIulfSLEmzsrKyIgyj9nnry43Ex4mrTmkd61Ccc9VIeX0KlwFDgDaSXizxViOg4EgblnQFsMXMZksaFEEspY25UFpfxghgBEBaWtph77vgRrV3vtzIud2ak9owMdbhOOeqkfL6FDYR9CdcBcwuUb4b+EEE2z4buErSECAJaCTpdSBTUiszy5DUCtgSLp8OtCuxftswBldBHy7bQsbO/fxkiA9455yrmDKTgpnNA+ZJetPM8iu6YTN7lLCZKawpPGRmt0l6FrgDeCr8+99wlbHAm5J+S9DR3A2YWdH91nZmxv9NWUG7ZvV8WGznXIVFMnR2R0m/AXoS/OIHwMw6H+U+nwLGSLoHWA/cEG5vkaQxwGKC5qn7/cqjisnctZ/b/jKDFVtyeOa6k0mI9ym4nXMVE0lS+Cvwc+B3wPnAXZTe/l8mM5sKTA2fZwMXlrHccGB4RbbtvvLv2ems2JLDs9efzPWn+lVHzrmKi+SnZD0zmwLIzNaZ2RPABdENyx2NCQs307ddE25Ia4fkcyU45youkqSwX1IcsELSdyRdw1eXkboqYsO2vSzYuJPLvB/BOXcMIkkK3weSge8BpwK3E3QQuyrkg0XBjGreueycOxaRDIj3Rfg0h6A/wVVB4xdupkerRnRIqR/rUJxz1Vh5N6+9Syk3jx1gZj5yahWRuWs/s9dt58GLu8c6FOdcNVdeTeG5SovCHZOJYdOR9yc4545VeTevfVSZgbijN37hZrqk1qdby4axDsU5V80dsU9B0hpKH4PoaG9ec8fRtj15zFizjW+d1yXWoTjnaoBIbl5LK/E8ieAO5GbRCcdV1Lj5mygsMi7r401Hzrljd8RLUs0su8Rjo5m9gN+8ViWYGW/OWE/vNo3o1bpxrMNxztUAkTQf9S/xMo6g5uCN11XA9FXZLN28m99c2yfWoTjnaohImo+eL/G8gHBe5ahE4yK2c18+P/r3fNo1q8fQvj6RjnPu+Ijk5rXzKyMQVzF//HAlm3bu4z/fOovkupHkduecO7Ij9ilISpH0oqQ5kmZL+j9JKZURnCvd5p37GTVtLdf0a0P/9k1jHY5zrgaJZOyj0UAWcB1wffj8n9EMypXvHzPXk1dYxA8u8juYnXPHVyRJoZmZ/dLM1oSPXwFNjrSSpCRJMyXNk7RI0pNh+ROSNkqaGz6GlFjnUUkrJS2TNPioj6oGMzPembuRs7qk0K5ZcqzDcc7VMJE0Rn8o6WZgTPj6euC9CNbLBS4wsxxJCcCnksaH7/3OzA4aRkNST+BmoBfBdJyTJXX32dcONi99J+uy93L/+V1jHYpzrgaKpKZwH/AmkBc+RgMPStotaVdZK1kgJ3yZED7KHGAPGAqMNrNcM1sDrAQGRBBfrTJlSSZxgsG9/GY159zxF8nNaw3NLM7M6oSPuLCsoZk1Km9dSfGS5gJbgElmNiN86zuS5kt6TdKBntI2wIYSq6eHZYdu815JsyTNysrKiuQYa5Rpq7I5uW0TGtdLiHUozrkaKKKZ3SVdJem58HFFpBs3s0Iz6wu0BQZI6g28DHQB+gIZfHUfRGnzR5Y25tIIM0szs7TU1NRIQ6kRcnILmLdhB2d39Yu/nHPREcklqU8BDwCLw8cDYVnEzGwHMBW41Mwyw2RRBLzCV01E6UC7Equ1BTZVZD813cw12RQUGWd1aR7rUJxzNVQkNYUhwMVm9pqZvQZcGpaVS1KqpCbh83rARcBSSa1KLHYNsDB8Pha4WVKipE5AN2BmxEdSC0xavIXkuvGc2sHvTXDORUekt8I2AbaFzyMdea0VMEpSPEHyGWNm4yT9XVJfgqahtQQd2ZjZIkljCGojBcD9fuXRVwoKi5i4aDMX9mhJUkJ8rMNxztVQkSSF3wBfSvqQoN3/XODRI61kZvOBfqWU317OOsOB4RHEVOvMXLuN7D15DPHZ1ZxzURRJUpgEfEQwOqqAH5vZ5qhG5Q7zzpcbqV83nkEntoh1KM65GqzMPgVJV0rKAhYQtO1nm9l/PSFUvr15Bbw3P4PLT25FvbredOSci57yOpqHAwPNrBXBuEe/rpyQ3KEmLspkT14h15/a7sgLO+fcMSgvKRSY2VKA8KYzn1gnRqYs3UJqw0RO6+hXHTnnoqu8PoUWkh4s67WZ/TZ6YbkDCouMT1dkcf5JLZBKu7/POeeOn/KSwiscXDs49LWrBAs27mT73nzO61677t52zsVGmUnBzJ6szEBc6T5enoUEA7t5UnDORV9EYx+52PloeRZ92jSmWf26sQ7FOVcLeFKownbuy2fuhh3edOScqzSeFKqwaSu3UlhknOtJwTlXSSIZJfUBSY0UeFXSHEmXVEZwtd2kJZk0SqpD33ZNYh2Kc66WiKSmcLeZ7QIuAVKBu4AKDZ3tKi6voIjJizO5uOcJJMR7hc45Vzki+bY5cHH8EOCvZjaP0ifEccfR9NXZ7NpfwGU+AJ5zrhJFkhRmS5pIkBQ+kNQQKIpuWLVbfmERz09cRtPkBM7p5hPqOOcqTySjpN5DMHXmajPbKymFoAnJRckbn69jfvpOXrq1v8+d4JyrVJHUFM4BGgAnSzoX6EUw6U65JCVJmilpnqRFkp4My5tJmiRpRfi3aYl1HpW0UtIySYOP7pCqv4+WZ9EltT5D+rQ68sLOOXccRVJT+FGJ50kEcyrPBi44wnq5wAVmliMpAfhU0njgWmCKmT0l6RHgEeDHknoCNxMkndbAZEnda9vsa0VFxux12z0hOOdi4ohJwcyuLPlaUjvgmQjWMyAnfJkQPgwYCgwKy0cBU4Efh+WjzSwXWCNpJUECmh7BcdQYK7Ny2LW/wOdhds7FxNFc65gO9I5kQUnxkuYCW4BJ4RDcLc0sAyD8e2AqsTbAhkP206aUbd4raZakWVlZWUcRftU2c00wFXZax2YxjsQ5VxsdsaYg6fcEv/AhSCJ9gXmRbDxs+ukrqQnwtqTykklpl7naYQVmI4ARAGlpaYe9X51l7trPC5NX0K1FAzqmJMc6HOdcLRRJn8KsEs8LgH+Y2WcV2YmZ7ZA0FbgUyJTUyswyJLUiqEVAUDMoObVYW2BTRfZT3T09YSk5ufm8+Y3Tfe4E51xMlNt8JCkeuNjMRoWPNyJNCJJSwxoCkuoBFwFLgbHAHeFidwD/DZ+PBW6WlCipE9CNYG7oWiFrdy7j5mVwU1o7urf0aSucc7FRbk3BzArDL/e6ZpZXwW23AkaFiSUOGGNm4yRNB8ZIugdYD9wQ7muRpDHAYoIayf216cqjN2esJ6+wiK+d1THWoTjnarFImo/WAp9JGgvsOVB4pOk4zWw+0K+U8mzgwjLWGQ4MjyCmGiWvoIjXZ6zjvO6pdEltEOtwnHO1WCRJYVP4iMOn44yK8QszyNqdy53Xd4x1KM65Wi6S+xR8Ws4oGzt3E22a1OM8n3LTORdjZSYFSS+Y2fclvUvpl4ZeFdXIaoncgkKmrcrmhrS2xMX5FUfOudgqr6bwt/Dvc5URSG31xZrt7Msv9Ck3nXNVQnlJ4ZeS3gTeMbM95SznjsFHy7dQNz6OM7ukxDoU55wr9z6FEcAVBOMQ/VPS1ZLqVlJctcbnq7fRr30TkutG0ufvnHPRVWZSMLP/mtkwoAPwFsGNZuslvSbp4soKsCbbtT+fRZt2cnpnryU456qGIw6IZ2b7zOyfZnYNwTzN/YAJUY+sFpi9djtFBmd08sHvnHNVwxGTgqSWkr4r6TPgHWAicGq0A6sNPl+dTUK86Nfeh8l2zlUN5V2S+g1gGHAiQfPRwxUdCM+Vzcz4YNFmBnRqRr26PuWmc65qKK938yzgKWCymRVVUjy1xsKNu1ibvZdvntcl1qE451yxMpOCmd1VmYHUNv+Zk06dOHFp7xNiHYpzzhU7mpnX3DFaunkXr3++jmv6taFJsl/l65yrOjwpVLKiIuMnby2gYVIdHh3SI9bhOOfcQSJKCpLOkXRX+Dw1nATHHYU3Z65nzvodPHZ5T5rV91qCc65qieSS1J8DPwYeDYsSgNcjWK+dpA8lLZG0SNIDYfkTkjZKmhs+hpRY51FJKyUtkzT46A6p6srJLeB3k5ZzeqdmXNu/TazDcc65w0QytsI1BDeszQEws02SIplXoQD4oZnNCZefLWlS+N7vzOyggfYk9QRuBnoBrYHJkrrXpNnXRn62huw9efzlspN8DmbnXJUUSfNRnpkZ4fDZkupHsmEzyzCzA4lkN7AEKO/n8VBgtJnlmtkaYCUwIJJ9VRfj5mdwRudmfrOac67KiiQpjJH0Z6BJeEPbZOCViuxEUkeC2saMsOg7kuaH4ygd+IZsA2wosVo6pSQRSfdKmiVpVlZWVkXCiKmd+/JZlrmbMzs3j3UozjlXpkjGPnoO+DfwH4K7m39mZr+PdAeSGoTrft/MdgEvA12AvkAG8PyBRUvbfSnxjDCzNDNLS02tPnMQzF63DTM4rZPXEpxzVVdE4zWb2SRg0hEXPISkBIKE8IaZvRVuK7PE+68A48KX6UC7Equ3JZgbukaYuWZ7MM5RO08KzrmqK5Krj3ZL2nXIY4OktyV1Lmc9Aa8CS8zstyXKW5VY7BpgYfh8LHCzpMTwktduwMyjOaiqpqjImLhoM/3aNfVxjpxzVVokNYXfEvxif5Ogiedm4ARgGfAaMKiM9c4GbgcWSJoblv0EGCapL0HT0FrgPgAzWyRpDLCY4Mql+2vKlUcfLc9i9dY9PHBRt1iH4pxz5VJwYVE5C0gzzOz0Q8o+N7MzJM0zs1OiGmE50tLSbNasWbHafUTMjBv+NJ0N2/fyycMXULeO30TunIstSbPNLK209yL5hiqSdKOkuPBxY4n3ys8ojre/3Misddv5/kXdPSE456q8SL6lbiVoBtoCZIbPb5NUD/hOFGOr9j5fnc1P315Iv/ZNuCmt3ZFXcM65GDtin4KZrQauLOPtT49vODXH/vxCHhj9Ja2bJDHi9jTi4vwOZudc1XfEpCApCbiHYPiJpAPlZnZ3FOOq9kZNW0vmrlxevLcfqQ0TYx2Oc85FJJLmo78TXG00GPiI4P6B3dEMqiYY/cUGzuycwumdU2IdinPORSySpNDVzB4H9pjZKOByoE90w6reMnbuY83WPVzYo0WsQ3HOuQqJJCnkh393SOoNNAY6Ri2iGmD6qmwAzvBagnOumonk5rUR4aB1jxHcddwAeDyqUVVzn6/OpnG9BHq2ahTrUJxzrkLKTQqS4oBdZrYd+Bgoc1gLFygqMj5evpUzO6f4FUfOuWqn3OYjMyvC70WokLnpO9i8az+De7eMdSjOOVdhkfQpTJL0UDi9ZrMDj6hHVk1NWLiZhHhxwUmeFJxz1U8kfQoH7ke4v0SZ4U1JpZq8OJMzuzSncb2EWIfinHMVFskdzZ0qI5CaYPPO/azeuodhA9rHOhTnnDsqkcynkCzpMUkjwtfdJF0R/dCqn89XB5eintnFL0V1zlVPkfQp/BXIA84KX6cDv4paRNXY9FXZNEqqQw+/FNU5V01FkhS6mNkzhDexmdk+Sp9P+SBhx/SHkpZIWiTpgbC8maRJklaEf5uWWOdRSSslLZM0+CiPKSbMjE9XbuX0zinE+6WozrlqKpKkkBcOk20AkroAuRGsVwD80Mx6AGcA90vqCTwCTDGzbsCU8DXhezcTDLx3KfCSpGozd+WCjTvZuGMfl/T0q46cc9VXJEnhCWAC0E7SGwRf5A8faSUzyzCzOeHz3cASoA0wFBgVLjYKuDp8PhQYbWa5ZrYGWAkMiPhIYuz9BZupEycu9qTgnKvGIrn6aKKk2QS/9gU8YGZbK7ITSR2BfsAMoKWZZYTbzpB0YNS4NsDnJVZLD8uqPDNj/MIMzuranCbJdWMdjnPOHbVIrj4aC1wCTDWzcUeREBoA/wG+b2a7ylu0lLLDpvuUdK+kWZJmZWVlVSSUqFmcsYt12XsZ0vuEWIfinHPHJJLmo+eBgcBiSf+SdH048c4RSUogSAhvmNlbYXGmpFbh+60IpvmEoGZQcs7KtsCmQ7dpZiPMLM3M0lJTUyMJI+rGL9hMfJy4pJcnBedc9XbEpGBmH5nZtwnuYB4B3MhXX+RlkiTgVWCJmf22xFtjgTvC53cA/y1RfrOkREmdgG7AzEgPJFbMjPcXZHBG52Y0q+9NR8656i2SYS4Irz66ErgJ6M9XHcXlORu4HVggaW5Y9hPgKWCMpHuA9cANAGa2SNIYYDHBlUv3m1lh5IcSG8szc1i9dQ93n+M3fjvnqr9I5mj+J3A6wRVIfyToWyg60npm9ill389wYRnrDAeGH2nbVcn7CzKQYLA3HTnnaoBIagp/BW458Ktd0tmSbjGz+4+wXq0wfmEGAzo2I7VhYqxDcc65YxZJn8IEoI+kpyWtJRjiYmm0A6sOVm7JYXlmDkP6tIp1KM45d1yUWVOQ1J3gDuNhQDbwT0Bmdn4lxVblTViYAcClfimqc66GKK/5aCnwCXClma0EkPSDSomqmnh/wWZO7dCUlo0iukLXOeeqvPKaj64DNgMfSnpF0oVEMBBebbF26x4WZ+ziMq8lOOdqkDKTgpm9bWY3AScBU4EfAC0lvSzpkkqKr8oav3AzAJd5f4JzrgaJpKN5j5m9YWZXENxlPJdwZNPabPzCDE5p14Q2TerFOhTnnDtuIhnmopiZbTOzP5vZBdEKqDrYsG0v89N3+lhHzrkap0JJwQUmHGg66u1NR865msWTwlF4b0EGvds0on1KcqxDcc6548qTQgV9uX47czfs4Oq+1WKqB+ecqxBPChX0+/+tpGlyAsMGtI91KM45d9x5UqiAhRt38r+lW7jnnE7UT4xogFnnnKtWPClUwItTVtAoqQ5fO6tjrENxzrmo8KQQoazduUxaksltZ3SgUVJCrMNxzrmo8KQQoSlLMjGDK05uHetQnHMuaqKWFCS9JmmLpIUlyp6QtFHS3PAxpMR7j0paKWmZpMHRiutoTVqcSZsm9ejRqmGsQ3HOuaiJZk1hJHBpKeW/M7O+4eN9AEk9CYbp7hWu85Kk+CjGViHb9+TxycqtXNyzJcHU0845VzNFLSmY2cfAtggXHwqMNrNcM1sDrAQGRCu2inpjxjryCoq45XS/DNU5V7PFok/hO5Lmh81LTcOyNsCGEsukh2WHkXSvpFmSZmVlZUU7VnILChk1fR3ndU+le0tvOnLO1WyVnRReBroAfYEM4PmwvLQ2GSttA2Y2wszSzCwtNTU1KkGWNHbuJrJ25/KNgZ2jvi/nnIu1Sk0KZpZpZoVmVgS8wldNROlAuxKLtgU2VWZspTEzXv10DSed0JCzu6bEOhznnIu6Sk0KkkoOK3oNcODKpLHAzZISJXUCugEzKzO20sxZv52lm3dz19kdvYPZOVcrRG2sBkn/AAYBzSWlAz8HBknqS9A0tBa4D8DMFkkaAywGCoD7zawwWrFFaswX6STXjfd7E5xztUbUkoKZDSul+NVylh8ODI9WPBWVnZPLuPmbuOLkVj7OkXOu1vA7mssw/L0l5BUWeQezc65W8aRQik9XbOWtLzfyzfO60M0vQ3XO1SKeFA6RW1DIY+8soFPz+tx/ftdYh+Occ5XKG8sP8eaM9azN3svf7h5AUkKVGWnDOecqhdcUStiXV8gfP1zJWV1SOLd79G+Mc865qsaTQglj521ka04e37uwW6xDcc65mPCkEDIz/v75Orq3bMDpnZrFOhznnIsJTwqh2eu2s3DjLm4/o4Pfveycq7U8KYRenrqKpskJXHdq21iH4pxzMeNJAVi4cSdTlm7hjrM6klzXL8hyztVetT4pmBnD31tC0+QE7j6nU6zDcc65mKr1SWHaqmymr87mexd2o1FSQqzDcc65mKr1SeEP/1tJi4aJDBvgU20651ytTgofLtvC9NXZ3HtuZ7972TnnqMVJYdf+fB75z3y6t2zAbWd0iHU4zjlXJUQtKUh6TdIWSQtLlDWTNEnSivBv0xLvPSpppaRlkgZHK64DXvpwFVt25/LcDad4LcE550LRrCmMBC49pOwRYIqZdQOmhK+R1BO4GegVrvOSpKh9U6dv38trn63hmn5tOLltk2jtxjnnqp2oJQUz+xjYdkjxUGBU+HwUcHWJ8tFmlmtma4CVwIBoxZZbUMQZnVN46JITo7UL55yrlir7Tq2WZpYBYGYZklqE5W2Az0sslx6WHUbSvcC9AO3bH90VQ11SG/C3u6OWc5xzrtqqKh3NpQ02ZKUtaGYjzCzNzNJSU314a+ecO54qOylkSmoFEP7dEpanA+1KLNcW2FTJsTnnXK1X2UlhLHBH+PwO4L8lym+WlCipE9ANmFnJsTnnXK0XtT4FSf8ABgHNJaUDPweeAsZIugdYD9wAYGaLJI0BFgMFwP1mVhit2JxzzpUuaknBzIaV8daFZSw/HBgerXicc84dWVXpaHbOOVcFeFJwzjlXzJOCc865YjIr9XaAakFSFrDuGDbRHNh6nMKJpZpyHODHUlX5sVRNR3ssHcys1Bu9qnVSOFaSZplZWqzjOFY15TjAj6Wq8mOpmqJxLN585JxzrpgnBeecc8Vqe1IYEesAjpOachzgx1JV+bFUTcf9WGp1n4JzzrmD1faagnPOuRI8KTjnnCtWK5OCpEvDuaBXSnok1vFUlKS1khZImitpVlhW5vzXVUlVn7u7Iso4lickbQzPzVxJQ0q8VyWPRVI7SR9KWiJpkaQHwvJqd17KOZbqeF6SJM2UNC88lifD8uieFzOrVQ8gHlgFdAbqAvOAnrGOq4LHsBZofkjZM8Aj4fNHgKdjHWcZsZ8L9AcWHil2oGd4fhKBTuF5i4/1MRzhWJ4AHipl2Sp7LEAroH/4vCGwPIy32p2Xco6lOp4XAQ3C5wnADOCMaJ+X2lhTGACsNLPVZpYHjCaYI7q6K2v+6yrFqvDc3RVVxrGUpcoei5llmNmc8PluYAnBdLjV7ryUcyxlqcrHYmaWE75MCB9GlM9LbUwKbYANJV6XOR90FWbAREmzwzmr4ZD5r4EWZa5d9ZQVe3U9V9+RND9sXjpQta8WxyKpI9CP4FdptT4vhxwLVMPzIile0lyCWSonmVnUz0ttTAoRzwddhZ1tZv2By4D7JZ0b64CipDqeq5eBLkBfIAN4Piyv8sciqQHwH+D7ZrarvEVLKavqx1Itz4uZFZpZX4IpigdI6l3O4sflWGpjUqj280Gb2abw7xbgbYIqYlnzX1cHNWbubjPLDP8jFwGv8FX1vUofi6QEgi/RN8zsrbC4Wp6X0o6lup6XA8xsBzAVuJQon5famBS+ALpJ6iSpLnAzwRzR1YKk+pIaHngOXAIspOz5r6uDGjN394H/rKFrCM4NVOFjkSTgVWCJmf22xFvV7ryUdSzV9LykSmoSPq8HXAQsJdrnJdY97DHq1R9CcFXCKuCnsY6ngrF3JrjCYB6w6ED8QAowBVgR/m0W61jLiP8fBNX3fIJfNveUFzvw0/A8LQMui3X8ERzL34EFwPzwP2mrqn4swDkEzQzzgbnhY0h1PC/lHEt1PC8nA1+GMS8EfhaWR/W8+DAXzjnnitXG5iPnnHNl8KTgnHOumCcF55xzxTwpOOecK+ZJwTnnXDFPCq7WkJRSYpTMzSVGzcyR9FIU9neipKnhPpZIGhGW9y05SqdzVUmdWAfgXGUxs2yCYQ6Q9ASQY2bPRXGXLwK/M7P/hvvsE5b3BdKA96O4b+eOitcUXK0naZCkceHzJySNkjRRwbwV10p6RsH8FRPCIRSQdKqkj8JBCT845I7ZA1oR3NQGgJktCO+i/wVwU1iDuCm8S/01SV9I+lLS0HAfd0r6b7jfZZJ+HpbXl/ReOM7+Qkk3RfszcrWH1xScO1wX4HyC8emnA9eZ2cOS3gYul/Qe8HtgqJllhV/Kw4G7D9nO74D/SZoGTAT+amY7JP0MSDOz7wBI+jXwPzO7OxzWYKakyeE2BgC9gb3AF+G+OwCbzOzycP3GUfocXC3kNQXnDjfezPIJhkWIByaE5QuAjsCJBF/Uk8JhjR8jGHzsIGb2V6AH8C9gEPC5pMRS9ncJ8Ei4ralAEtA+fG+SmWWb2T7gLYJhHBYAF0l6WtJAM9t5jMfrXDGvKTh3uFwAMyuSlG9fjQVTRPB/RsAiMzvzSBuyYETb14DXFEzbWdrQxyKojSw7qFA6ncOHPjYzWy7pVIIxfX4jaaKZ/aICx+dcmbym4FzFLQNSJZ0JwVDNknodupCCucAP9EGcQDCQ2UZgN8FUkQd8AHw3HOETSf1KvHexgjl56xHMsPWZpNbAXjN7HXiOYEpQ544LTwrOVZAF07heDzwtaR7BSJxnlbLoJcDCcJkPgB+Z2WbgQ6DngY5m4JcEUy3OD2sTvyyxjU8JRvicC/zHzGYBfQj6HeYSjIr5q+N+kK7W8lFSnauiJN1JiQ5p5yqD1xScc84V85qCc865Yl5TcM45V8yTgnPOuWKeFJxzzhXzpOCcc66YJwXnnHPF/h917ygVEnNFQgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"simulationWithoutDrug(100, 1000, 0.1, 0.05, 10)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}