1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480import curses
import math
import random
import time
import json
ROWS = 22 # official board: 22 rows
COLS = 10 # official board: 10 columns
LETTERS = 'IJLOSZT'
# binary representation of tetromino shapes
SHAPES = [
[0, 15, 0, 0], # I
[4, 7, 0], # J
[1, 7, 0], # L
[3, 3], # O
[3, 6, 0], # S
[6, 3, 0], # Z
[2, 7, 0] # T
]
class Tetromino:
"""Represents one tetromino"""
def __init__(self, letter):
"""Sets starting position and maps letter to matrix shape"""
self.pos = (4, 0) if letter == 'O' else (3, 0) # format: (x, y)
self.letter = letter
self.color = LETTERS.index(self.letter) + 1
self.shape = SHAPES[self.color - 1]
self.length = len(self.shape)
def step(self, board, direction):
"""Moves tetromino one field to direction, if possible; Returns True if successful, False if not"""
mv = (1, 0) if direction == 'RIGHT' else (-1, 0) if direction == 'LEFT' else (0, 1)
status = True
self.draw(board, colored=False)
self.pos = (self.pos[0] + mv[0], self.pos[1] + mv[1])
if not self.pos_valid(board):
self.pos = (self.pos[0] - mv[0], self.pos[1] - mv[1])
status = False
self.draw(board)
return status
def rotate(self, board):
"""Rotates tetromino 90 degrees clockwise if possible"""
self.draw(board, colored=False)
self.shape = self.bit_matrix_turn(self.shape)
if not self.pos_valid(board):
self.shape = self.bit_matrix_turn(self.shape, clockwise=False)
self.draw(board)
def draw(self, board, colored=True, bit=False):
"""Adds tetromino to the board"""
for y in range(self.length):
for x in range(self.length):
if self.shape[y] >> (self.length - 1 - x) & 1:
if bit:
board[self.pos[1] + y] += (1 if colored else -1) * (1 << (COLS - 1 - self.pos[0] - x))
else:
board[self.pos[1] + y][self.pos[0] + x] = self.color if colored else 0
def pos_valid(self, board, bit=False):
"""Checks if current position is allowed; Returns True if yes, False if not"""
for y in range(self.length):
for x in range(self.length):
if self.shape[y] >> (self.length - 1 - x) & 1:
if not 0 <= (self.pos[1] + y) < ROWS or not 0 <= (self.pos[0] + x) < COLS:
return False
if bit:
if board[self.pos[1] + y] >> (COLS - 1 - self.pos[0] - x) & 1:
return False
elif board[self.pos[1] + y][self.pos[0] + x]:
return False
return True
@staticmethod
def bit_matrix_turn(matrix, clockwise=True):
"""Returns given n*n bit-matrix rotated by 90 degrees"""
res = []
n = len(matrix)
for p in (range(n - 1, -1, -1) if clockwise else range(n)):
row = 0
for i in range(n):
row += (matrix[i] >> p & 1) << (i if clockwise else n - i - 1)
res.append(row)
return res
class Screen:
"""Represents the terminal screen"""
BORDER_LEFT = 3
BORDER_TOP = 3
MIN_LEVEL = 1
MAX_LEVEL = 1000
def __init__(self, vis):
"""Initiates curses; Prepares terminal; Sets color pairs; Builds board"""
self.board = None
self.score = 0
self.level = 0
if vis:
# prepare terminal
self.sdtscr = curses.initscr()
self.sdtscr.nodelay(True)
self.sdtscr.keypad(True)
curses.start_color()
curses.noecho()
curses.cbreak()
curses.curs_set(False)
# set tetromino colors
for color in range(1, 8):
curses.init_pair(color, 0, color)
# build background borders
self._draw_matrix(self.BORDER_LEFT, self.BORDER_TOP, [['| '] for _ in range(ROWS - 2)])
self._draw_matrix(self.BORDER_LEFT + COLS + 1, self.BORDER_TOP, [[' |'] for _ in range(ROWS - 2)])
# build blank board
self.board = [[0 for _ in range(COLS)] for _ in range(ROWS)]
if vis: self.update_board()
def _draw_text(self, x, y, text=' ', color=0):
"""Draws text colored with specified color-pair to position (x, y)"""
self.sdtscr.addstr(y, x, text, curses.color_pair(color))
def _draw_matrix(self, x, y, board):
"""Draws matrix at position (x, y) to the terminal"""
for row in range(len(board)):
for col in range(len(board[0])):
if isinstance(board[row][col], int):
self._draw_text((col + x) * 2, row + y, color=board[row][col])
else:
self._draw_text((col + x) * 2, row + y, text=board[row][col])
def remove_rows(self):
"""Removes every complete horizontal row"""
for i in range(ROWS):
if all(val != 0 for val in self.board[i]):
del self.board[i]
self.board = [[0 for _ in range(COLS)]] + self.board
self.score += 1
def update_next_tetro(self, tetro):
"""Updates next up tetromino display"""
pos = (self.BORDER_LEFT + COLS + 4, self.BORDER_TOP + 4)
self._draw_matrix(*pos, [[0 for _ in range(3 - len(tetro.shape))] + \
[tetro.color * (row >> i & 1) for i in range(tetro.length - 1, -1, -1)] + [0]
for row in tetro.shape])
def update_stats(self):
"""Updates level and score displays"""
pos = ((self.BORDER_LEFT + COLS + 4) * 2, self.BORDER_TOP)
if self.level < self.MAX_LEVEL:
self.level = max(self.score // 10 + 1, self.MIN_LEVEL)
self._draw_text(pos[0], pos[1], text='LEVEL:' + '{:8}'.format(self.level))
self._draw_text(pos[0], pos[1] + 1, text='SCORE:' + '{:8}'.format(self.score))
def update_message(self, text):
"""Prints message to the screen; max 20 characters in length"""
assert len(text) <= 20
# overwrite last message by appending whitespaces
self._draw_text((self.BORDER_LEFT + COLS + 4) * 2, self.BORDER_TOP + ROWS - 3, text + ' ' * (20 - len(text)))
self.sdtscr.refresh()
def update_board(self):
"""Updates terminal; The first two rows of board are hidden"""
self._draw_matrix(self.BORDER_LEFT + 1, self.BORDER_TOP, self.board[2:])
self.sdtscr.refresh()
def bit_rep(self):
"""Returns binary representation of current board"""
res = []
for y in range(ROWS):
row = 0
for x in range(COLS):
if self.board[y][x]:
row += (1 << (COLS - 1 - x))
res.append(row)
return res
def cleanup(self):
"""Returns terminal to its original state"""
self.sdtscr.clear()
self.sdtscr.keypad(False)
curses.echo()
curses.nocbreak()
curses.curs_set(True)
curses.endwin()
class AI:
"""Provides methods for heuristic computing of the best move for the current tetris board"""
@staticmethod
def get_best_move(board, dna, tetro, follow):
"""Chooses the best tetro move by also further evaluating their combination with the following tetromino"""
sv = tetro.pos[:]
best = AI._get_best_pos(board, dna, tetro, slide=3) # get the 3 best moves
final = None
for m in range(len(best)):
# set tetromino; remove full rows
tmp = board[:]
tetro.pos = best[m][1]
for r in range(best[m][2]):
tetro.shape = Tetromino.bit_matrix_turn(tetro.shape)
tetro.draw(tmp, bit=True)
for i in range(ROWS):
if tmp[i] == 1023:
del tmp[i]
tmp.insert(0, 0)
# evaluate board with following tetromino
future = AI._get_best_pos(tmp, dna, follow, slide=1)[0]
if final is None or future[0] > final[0]:
final = [future[0], m]
for r in range(best[m][2]):
tetro.shape = Tetromino.bit_matrix_turn(tetro.shape, clockwise=False)
tetro.pos = sv
return best[final[1]][1], best[final[1]][2]
@staticmethod
def _get_best_pos(board, dna, tetro, slide):
"""Tries every move with given tetro, evaluates the resulting boards and returns the best ones"""
best = []
sv = tetro.pos[:]
tmp = board[:]
# check different rotations of shape
for r in range(1 if tetro.letter == 'O' else 2 if tetro.letter in 'SZI' else 4):
for x in range(-2, COLS - 1):
for y in range(ROWS):
tetro.pos = (x, y)
if not tetro.pos_valid(tmp, bit=True):
# stop when tetro can't fall freely to the position anymore
break
if tetro.pos[1] > 0:
# set tetromino; remove full rows; evaluate
tetro.pos = (tetro.pos[0], tetro.pos[1] - 1)
tetro.draw(tmp, bit=True)
changed = False
for i in range(ROWS):
if tmp[i] == 1023:
del tmp[i]
tmp.insert(0, 0)
changed = True
res = AI._evaluate(tmp, dna)
# make a new copy of board if rows were removed, else simply delete last tetromino
if changed: tmp = board[:]
else: tetro.draw(tmp, colored=False, bit=True)
# save the best of all possible positions
for i in range(slide):
if len(best) == i or res > best[i][0]:
best.insert(i, [res, tetro.pos[:], r])
if len(best) > slide: del best[slide]
break
tetro.shape = Tetromino.bit_matrix_turn(tetro.shape)
# reset tetro
if tetro.letter in 'SZI':
tetro.shape = Tetromino.bit_matrix_turn(Tetromino.bit_matrix_turn(tetro.shape))
tetro.pos = sv
return best
@staticmethod
def _evaluate(board, dna):
"""Evaluates board considering different factors to compute a score (the higher the better)"""
# count gaps (empty spaces under blocks)
gaps = 0
bumps = []
for x in range(COLS):
blocked = False
for y in range(ROWS):
if blocked and not (board[y] >> x & 1):
gaps += 1
elif not blocked:
if board[y] >> x & 1:
bumps.append(ROWS - y)
blocked = True
elif y == ROWS - 1: # add zero to bumps list when column is empty
bumps.append(0)
# get added height of all columns
height = sum(bumps)
# compute bumpiness (absolute difference of adjacent columns)
bumpiness = 0
for i in range(len(bumps) - 1):
bumpiness += abs(bumps[i] - bumps[i + 1])
# return score
return (dna[0] * gaps) + (dna[1] * height) + (dna[2] * bumpiness)
class Genetics:
"""Provides methods to improve ai performance"""
@staticmethod
def _normalize_vector(vec):
"""Returns normalized version of given vector"""
length = 0
for e in vec:
length += math.pow(e, 2)
length = math.sqrt(length)
return [e / length for e in vec]
@staticmethod
def create_population(count=100, weights=3):
"""Creates random population and saves it to text file"""
population = []
for _ in range(count):
population.append(Genetics._normalize_vector([random.random() - 0.5 for _ in range(weights)]))
with open('/tmp/generation.txt', 'w') as log:
for dna in population:
log.write(json.dumps(dna) + '\n')
@staticmethod
def evolve(cycles=10, pop_tests=5, weights=3):
"""Improves AI weights using generic computing"""
print('Starting time:', time.ctime(), '\nPlanned cycles:', cycles, end='\n\n')
# read last population
population = []
pop_count = 0
with open('/tmp/generation.txt', 'r') as log:
for dna in log:
population.append([json.loads(dna[:-1]), 0])
pop_count += 1
# run multiple cycles
for c in range(cycles):
seed = random.randrange(1000)
# test population
for dna in population:
fitness = 0
for j in range(pop_tests):
fitness += main(ai=True, vis=False, dna=dna[0], seed=seed + j)
dna[1] = fitness
# choose offspring
offspring = []
for _ in range(pop_count * 3 // 10):
pool = sorted(random.sample(population, 4 + pop_count // 20) , key=lambda x: x[1], reverse=True)
child = [pool[0][0][k] * (pool[0][1] + 1) + pool[1][0][k] * (pool[1][1] + 1) for k in range(weights)]
child = Genetics._normalize_vector(child)
# offspring randomly mutates
if not random.randrange(15):
change = random.randrange(weights)
child = [(e + (random.random() * 0.4 - 0.2) if i == change else e) for i, e in enumerate(child)]
child = Genetics._normalize_vector(child)
offspring.append([child, 0])
# replace worst 30% of population with offspring
population = sorted(population, key=lambda x: x[1], reverse=True)[:pop_count * 7 // 10]
population += offspring
# save last population
with open('/tmp/generation.txt', 'w') as log:
for dna in population:
log.write(json.dumps(dna[0]) + '\n')
# print status
print('Finished ', c + 1, '. cycle at ', time.ctime(), '. Best fitness: ', population[0][1], sep='')
class Creator:
"""Seven system random generator"""
def __init__(self):
"""Sets up initial list of pieces"""
self.cards = [*LETTERS]
self.index = 0
def next(self):
"""Returns next random piece"""
if self.index == 0: random.shuffle(self.cards)
out = Tetromino(self.cards[self.index])
self.index = (self.index + 1) % len(LETTERS)
return out
def main(ai=False, vis=True, dna=None, seed=None):
"""Main function; Initiates all components; Contains game loop"""
assert (ai, vis) != (0, 0)
dna = dna or [-0.47515, -0.83254, -0.28479] # default weights
if seed: random.seed(seed) # set seed for fair testing
tetro_count = 0
screen = Screen(vis)
if vis: screen.update_message('AI: ON' if ai else 'AI: OFF')
creator = Creator()
follow = creator.next()
keys = (0x71, 0x0a, 0x61, 0x103, 0x105, 0x102, 0x104)
running = True
while running:
# when learning, end game after a few tetrominos
if not vis and tetro_count == 1000: break
tetro_count += 1
# remove full rows, decide following tetromino, update score and level
screen.remove_rows()
tetro = follow
follow = creator.next()
if vis:
screen.update_stats()
screen.update_next_tetro(follow)
# check if game is over
if not tetro.pos_valid(screen.board):
running = False
if vis:
screen.update_message('GAME OVER!')
time.sleep(2)
else:
if ai:
# compute best move
pos, rotation = AI.get_best_move(screen.bit_rep(), dna, tetro, follow)
for _ in range(rotation):
tetro.rotate(screen.board)
# get tetro into computed position; if path is blocked, move down
while tetro.pos[0] < pos[0]:
if not tetro.step(screen.board, 'RIGHT'): break
while tetro.pos[0] > pos[0]:
if not tetro.step(screen.board, 'LEFT'): break
if vis:
# stay in loop while tetromino is movable; handle user input
step = True
while step:
timer = time.time()
while (timer + 0.31 / screen.level) > time.time():
key = screen.sdtscr.getch()
if key in keys:
i = keys.index(key)
if i == 0:
running = step = False; break # Q
elif i == 1:
while tetro.step(screen.board, 'DOWN'): pass # Enter
elif i == 2:
ai = not ai; screen.update_message('AI: ON' if ai else 'AI: OFF') # A
elif i == 3:
tetro.rotate(screen.board) # Up
elif i == 4:
tetro.step(screen.board, 'RIGHT') # Right
elif i == 5:
tetro.step(screen.board, 'DOWN') # Down
else:
tetro.step(screen.board, 'LEFT') # Left
screen.update_board()
time.sleep(0.01)
# keep current tetromino under control until no longer movable
if not tetro.step(screen.board, 'DOWN'):
break
screen.update_board()
else:
while tetro.step(screen.board, 'DOWN'):
pass
# exit procedure
if vis:
screen.cleanup()
print('Game Over! Lines cleared:', screen.score)
else:
return screen.score
# start game
main()