1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66package openai
import (
"context"
"github.com/deluan/pipelm"
"github.com/sashabaranov/go-openai"
)
const defaultChatModel = "gpt-3.5-turbo"
// ChatModel is a LLM implementation that uses the Chat Completions API with the chat style models, like gpt-3.5-turbo and gpt-4.
// It uses a special prompt, Chat, to format the messages as expected by the chat completion API.
// If you use a different prompt, it will be wrapped in a Chat with a single user message.
type ChatModel struct {
*CompletionModel
}
func NewChatModel(opts Options) *ChatModel {
if opts.Model == "" {
opts.Model = defaultChatModel
}
llm := NewCompletionModel(opts)
return &ChatModel{CompletionModel: llm}
}
func (m *ChatModel) Call(ctx context.Context, input string) (string, error) {
req := m.makeRequest([]pipelm.ChatMessage{{Role: "user", Content: input}})
resp, err := m.client.CreateChatCompletion(ctx, req)
if err != nil {
return "", err
}
return resp.Choices[0].Message.Content, nil
}
func (m *ChatModel) Chat(ctx context.Context, msgs []pipelm.ChatMessage) (string, error) {
req := m.makeRequest(msgs)
resp, err := m.client.CreateChatCompletion(ctx, req)
if err != nil {
return "", err
}
return resp.Choices[0].Message.Content, nil
}
func (m *ChatModel) makeRequest(msgs []pipelm.ChatMessage) openai.ChatCompletionRequest {
var res []openai.ChatCompletionMessage
for _, m := range msgs {
res = append(res, openai.ChatCompletionMessage{
Role: m.Role,
Content: m.Content,
})
}
req := openai.ChatCompletionRequest{
Messages: res,
Model: m.opts.Model,
Temperature: m.opts.Temperature,
MaxTokens: m.opts.MaxTokens,
TopP: m.opts.TopP,
FrequencyPenalty: m.opts.FrequencyPenalty,
PresencePenalty: m.opts.PresencePenalty,
Stop: m.opts.Stop,
}
return req
}