๐Ÿ“ฆ astral-sh / docs

๐Ÿ“„ index.md ยท 604 lines
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604# [Using uv with AWS Lambda](#using-uv-with-aws-lambda)

[AWS Lambda](https://aws.amazon.com/lambda/) is a serverless computing service that lets you run code without provisioning or managing servers.

You can use uv with AWS Lambda to manage your Python dependencies, build your deployment package, and deploy your Lambda functions.

Tip

Check out the [`uv-aws-lambda-example`](https://github.com/astral-sh/uv-aws-lambda-example) project for an example of best practices when using uv to deploy an application to AWS Lambda.

## [Getting started](#getting-started)

To start, assume we have a minimal FastAPI application with the following structure:

```
project
โ”œโ”€โ”€ pyproject.toml
โ””โ”€โ”€ app
    โ”œโ”€โ”€ __init__.py
    โ””โ”€โ”€ main.py

```

Where the `pyproject.toml` contains:

pyproject.toml

```
[project]
name = "uv-aws-lambda-example"
version = "0.1.0"
requires-python = ">=3.13"
dependencies = [
    # FastAPI is a modern web framework for building APIs with Python.
    "fastapi",
    # Mangum is a library that adapts ASGI applications to AWS Lambda and API Gateway.
    "mangum",
]

[dependency-groups]
dev = [
    # In development mode, include the FastAPI development server.
    "fastapi[standard]>=0.115",
]

```

And the `main.py` file contains:

app/main.py

```
import logging

from fastapi import FastAPI
from mangum import Mangum

logger = logging.getLogger()
logger.setLevel(logging.INFO)

app = FastAPI()
handler = Mangum(app)


@app.get("/")
async def root() -> str:
    return "Hello, world!"

```

We can run this application locally with:

```
$ uv run fastapi dev

```

From there, opening <http://127.0.0.1:8000/> in a web browser will display "Hello, world!"

## [Deploying a Docker image](#deploying-a-docker-image)

To deploy to AWS Lambda, we need to build a container image that includes the application code and dependencies in a single output directory.

We'll follow the principles outlined in the [Docker guide](../docker/) (in particular, a multi-stage build) to ensure that the final image is as small and cache-friendly as possible.

In the first stage, we'll populate a single directory with all application code and dependencies. In the second stage, we'll copy this directory over to the final image, omitting the build tools and other unnecessary files.

Dockerfile

```
FROM ghcr.io/astral-sh/uv:0.9.26 AS uv

# First, bundle the dependencies into the task root.
FROM public.ecr.aws/lambda/python:3.13 AS builder

# Enable bytecode compilation, to improve cold-start performance.
ENV UV_COMPILE_BYTECODE=1

# Disable installer metadata, to create a deterministic layer.
ENV UV_NO_INSTALLER_METADATA=1

# Enable copy mode to support bind mount caching.
ENV UV_LINK_MODE=copy

# Bundle the dependencies into the Lambda task root via `uv pip install --target`.
#
# Omit any local packages (`--no-emit-workspace`) and development dependencies (`--no-dev`).
# This ensures that the Docker layer cache is only invalidated when the `pyproject.toml` or `uv.lock`
# files change, but remains robust to changes in the application code.
RUN --mount=from=uv,source=/uv,target=/bin/uv \
    --mount=type=cache,target=/root/.cache/uv \
    --mount=type=bind,source=uv.lock,target=uv.lock \
    --mount=type=bind,source=pyproject.toml,target=pyproject.toml \
    uv export --frozen --no-emit-workspace --no-dev --no-editable -o requirements.txt && \
    uv pip install -r requirements.txt --target "${LAMBDA_TASK_ROOT}"

FROM public.ecr.aws/lambda/python:3.13

# Copy the runtime dependencies from the builder stage.
COPY --from=builder ${LAMBDA_TASK_ROOT} ${LAMBDA_TASK_ROOT}

# Copy the application code.
COPY ./app ${LAMBDA_TASK_ROOT}/app

# Set the AWS Lambda handler.
CMD ["app.main.handler"]

```

Tip

To deploy to ARM-based AWS Lambda runtimes, replace `public.ecr.aws/lambda/python:3.13` with `public.ecr.aws/lambda/python:3.13-arm64`.

We can build the image with, e.g.:

```
$ uv lock
$ docker build -t fastapi-app .

```

The core benefits of this Dockerfile structure are as follows:

1. **Minimal image size.** By using a multi-stage build, we can ensure that the final image only includes the application code and dependencies. For example, the uv binary itself is not included in the final image.
1. **Maximal cache reuse.** By installing application dependencies separately from the application code, we can ensure that the Docker layer cache is only invalidated when the dependencies change.

Concretely, rebuilding the image after modifying the application source code can reuse the cached layers, resulting in millisecond builds:

```
 => [internal] load build definition from Dockerfile                                                                 0.0s
 => => transferring dockerfile: 1.31kB                                                                               0.0s
 => [internal] load metadata for public.ecr.aws/lambda/python:3.13                                                   0.3s
 => [internal] load metadata for ghcr.io/astral-sh/uv:latest                                                         0.3s
 => [internal] load .dockerignore                                                                                    0.0s
 => => transferring context: 106B                                                                                    0.0s
 => [uv 1/1] FROM ghcr.io/astral-sh/uv:latest@sha256:ea61e006cfec0e8d81fae901ad703e09d2c6cf1aa58abcb6507d124b50286f  0.0s
 => [builder 1/2] FROM public.ecr.aws/lambda/python:3.13@sha256:f5b51b377b80bd303fe8055084e2763336ea8920d12955b23ef  0.0s
 => [internal] load build context                                                                                    0.0s
 => => transferring context: 185B                                                                                    0.0s
 => CACHED [builder 2/2] RUN --mount=from=uv,source=/uv,target=/bin/uv     --mount=type=cache,target=/root/.cache/u  0.0s
 => CACHED [stage-2 2/3] COPY --from=builder /var/task /var/task                                                     0.0s
 => CACHED [stage-2 3/3] COPY ./app /var/task                                                                        0.0s
 => exporting to image                                                                                               0.0s
 => => exporting layers                                                                                              0.0s
 => => writing image sha256:6f8f9ef715a7cda466b677a9df4046ebbb90c8e88595242ade3b4771f547652d                         0.0

```

After building, we can push the image to [Elastic Container Registry (ECR)](https://aws.amazon.com/ecr/) with, e.g.:

```
$ aws ecr get-login-password --region region | docker login --username AWS --password-stdin aws_account_id.dkr.ecr.region.amazonaws.com
$ docker tag fastapi-app:latest aws_account_id.dkr.ecr.region.amazonaws.com/fastapi-app:latest
$ docker push aws_account_id.dkr.ecr.region.amazonaws.com/fastapi-app:latest

```

Finally, we can deploy the image to AWS Lambda using the AWS Management Console or the AWS CLI, e.g.:

```
$ aws lambda create-function \
   --function-name myFunction \
   --package-type Image \
   --code ImageUri=aws_account_id.dkr.ecr.region.amazonaws.com/fastapi-app:latest \
   --role arn:aws:iam::111122223333:role/my-lambda-role

```

Where the [execution role](https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html#permissions-executionrole-api) is created via:

```
$ aws iam create-role \
   --role-name my-lambda-role \
   --assume-role-policy-document '{"Version": "2012-10-17", "Statement": [{ "Effect": "Allow", "Principal": {"Service": "lambda.amazonaws.com"}, "Action": "sts:AssumeRole"}]}'

```

Or, update an existing function with:

```
$ aws lambda update-function-code \
   --function-name myFunction \
   --image-uri aws_account_id.dkr.ecr.region.amazonaws.com/fastapi-app:latest \
   --publish

```

To test the Lambda, we can invoke it via the AWS Management Console or the AWS CLI, e.g.:

```
$ aws lambda invoke \
   --function-name myFunction \
   --payload file://event.json \
   --cli-binary-format raw-in-base64-out \
   response.json
{
  "StatusCode": 200,
  "ExecutedVersion": "$LATEST"
}

```

Where `event.json` contains the event payload to pass to the Lambda function:

event.json

```
{
  "httpMethod": "GET",
  "path": "/",
  "requestContext": {},
  "version": "1.0"
}

```

And `response.json` contains the response from the Lambda function:

response.json

```
{
  "statusCode": 200,
  "headers": {
    "content-length": "14",
    "content-type": "application/json"
  },
  "multiValueHeaders": {},
  "body": "\"Hello, world!\"",
  "isBase64Encoded": false
}

```

For details, see the [AWS Lambda documentation](https://docs.aws.amazon.com/lambda/latest/dg/python-image.html).

### [Workspace support](#workspace-support)

If a project includes local dependencies (e.g., via [Workspaces](../../../concepts/projects/workspaces/)), those too must be included in the deployment package.

We'll start by extending the above example to include a dependency on a locally-developed library named `library`.

First, we'll create the library itself:

```
$ uv init --lib library
$ uv add ./library

```

Running `uv init` within the `project` directory will automatically convert `project` to a workspace and add `library` as a workspace member:

pyproject.toml

```
[project]
name = "uv-aws-lambda-example"
version = "0.1.0"
requires-python = ">=3.13"
dependencies = [
    # FastAPI is a modern web framework for building APIs with Python.
    "fastapi",
    # A local library.
    "library",
    # Mangum is a library that adapts ASGI applications to AWS Lambda and API Gateway.
    "mangum",
]

[dependency-groups]
dev = [
    # In development mode, include the FastAPI development server.
    "fastapi[standard]",
]

[tool.uv.workspace]
members = ["library"]

[tool.uv.sources]
lib = { workspace = true }

```

By default, `uv init --lib` will create a package that exports a `hello` function. We'll modify the application source code to call that function:

app/main.py

```
import logging

from fastapi import FastAPI
from mangum import Mangum

from library import hello

logger = logging.getLogger()
logger.setLevel(logging.INFO)

app = FastAPI()
handler = Mangum(app)


@app.get("/")
async def root() -> str:
    return hello()

```

We can run the modified application locally with:

```
$ uv run fastapi dev

```

And confirm that opening <http://127.0.0.1:8000/> in a web browser displays, "Hello from library!" (instead of "Hello, World!")

Finally, we'll update the Dockerfile to include the local library in the deployment package:

Dockerfile

```
FROM ghcr.io/astral-sh/uv:0.9.26 AS uv

# First, bundle the dependencies into the task root.
FROM public.ecr.aws/lambda/python:3.13 AS builder

# Enable bytecode compilation, to improve cold-start performance.
ENV UV_COMPILE_BYTECODE=1

# Disable installer metadata, to create a deterministic layer.
ENV UV_NO_INSTALLER_METADATA=1

# Enable copy mode to support bind mount caching.
ENV UV_LINK_MODE=copy

# Bundle the dependencies into the Lambda task root via `uv pip install --target`.
#
# Omit any local packages (`--no-emit-workspace`) and development dependencies (`--no-dev`).
# This ensures that the Docker layer cache is only invalidated when the `pyproject.toml` or `uv.lock`
# files change, but remains robust to changes in the application code.
RUN --mount=from=uv,source=/uv,target=/bin/uv \
    --mount=type=cache,target=/root/.cache/uv \
    --mount=type=bind,source=uv.lock,target=uv.lock \
    --mount=type=bind,source=pyproject.toml,target=pyproject.toml \
    uv export --frozen --no-emit-workspace --no-dev --no-editable -o requirements.txt && \
    uv pip install -r requirements.txt --target "${LAMBDA_TASK_ROOT}"

# If you have a workspace, copy it over and install it too.
#
# By omitting `--no-emit-workspace`, `library` will be copied into the task root. Using a separate
# `RUN` command ensures that all third-party dependencies are cached separately and remain
# robust to changes in the workspace.
RUN --mount=from=uv,source=/uv,target=/bin/uv \
    --mount=type=cache,target=/root/.cache/uv \
    --mount=type=bind,source=uv.lock,target=uv.lock \
    --mount=type=bind,source=pyproject.toml,target=pyproject.toml \
    --mount=type=bind,source=library,target=library \
    uv export --frozen --no-dev --no-editable -o requirements.txt && \
    uv pip install -r requirements.txt --target "${LAMBDA_TASK_ROOT}"

FROM public.ecr.aws/lambda/python:3.13

# Copy the runtime dependencies from the builder stage.
COPY --from=builder ${LAMBDA_TASK_ROOT} ${LAMBDA_TASK_ROOT}

# Copy the application code.
COPY ./app ${LAMBDA_TASK_ROOT}/app

# Set the AWS Lambda handler.
CMD ["app.main.handler"]

```

Tip

To deploy to ARM-based AWS Lambda runtimes, replace `public.ecr.aws/lambda/python:3.13` with `public.ecr.aws/lambda/python:3.13-arm64`.

From there, we can build and deploy the updated image as before.

## [Deploying a zip archive](#deploying-a-zip-archive)

AWS Lambda also supports deployment via zip archives. For simple applications, zip archives can be a more straightforward and efficient deployment method than Docker images; however, zip archives are limited to [250 MB](https://docs.aws.amazon.com/lambda/latest/dg/python-package.html#python-package-create-update) in size.

Returning to the FastAPI example, we can bundle the application dependencies into a local directory for AWS Lambda via:

```
$ uv export --frozen --no-dev --no-editable -o requirements.txt
$ uv pip install \
   --no-installer-metadata \
   --no-compile-bytecode \
   --python-platform x86_64-manylinux2014 \
   --python 3.13 \
   --target packages \
   -r requirements.txt

```

Tip

To deploy to ARM-based AWS Lambda runtimes, replace `x86_64-manylinux2014` with `aarch64-manylinux2014`.

Following the [AWS Lambda documentation](https://docs.aws.amazon.com/lambda/latest/dg/python-package.html), we can then bundle these dependencies into a zip as follows:

```
$ cd packages
$ zip -r ../package.zip .
$ cd ..

```

Finally, we can add the application code to the zip archive:

```
$ zip -r package.zip app

```

We can then deploy the zip archive to AWS Lambda via the AWS Management Console or the AWS CLI, e.g.:

```
$ aws lambda create-function \
   --function-name myFunction \
   --runtime python3.13 \
   --zip-file fileb://package.zip \
   --handler app.main.handler \
   --role arn:aws:iam::111122223333:role/service-role/my-lambda-role

```

Where the [execution role](https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html#permissions-executionrole-api) is created via:

```
$ aws iam create-role \
   --role-name my-lambda-role \
   --assume-role-policy-document '{"Version": "2012-10-17", "Statement": [{ "Effect": "Allow", "Principal": {"Service": "lambda.amazonaws.com"}, "Action": "sts:AssumeRole"}]}'

```

Or, update an existing function with:

```
$ aws lambda update-function-code \
   --function-name myFunction \
   --zip-file fileb://package.zip

```

Note

By default, the AWS Management Console assumes a Lambda entrypoint of `lambda_function.lambda_handler`. If your application uses a different entrypoint, you'll need to modify it in the AWS Management Console. For example, the above FastAPI application uses `app.main.handler`.

To test the Lambda, we can invoke it via the AWS Management Console or the AWS CLI, e.g.:

```
$ aws lambda invoke \
   --function-name myFunction \
   --payload file://event.json \
   --cli-binary-format raw-in-base64-out \
   response.json
{
  "StatusCode": 200,
  "ExecutedVersion": "$LATEST"
}

```

Where `event.json` contains the event payload to pass to the Lambda function:

event.json

```
{
  "httpMethod": "GET",
  "path": "/",
  "requestContext": {},
  "version": "1.0"
}

```

And `response.json` contains the response from the Lambda function:

response.json

```
{
  "statusCode": 200,
  "headers": {
    "content-length": "14",
    "content-type": "application/json"
  },
  "multiValueHeaders": {},
  "body": "\"Hello, world!\"",
  "isBase64Encoded": false
}

```

### [Using a Lambda layer](#using-a-lambda-layer)

AWS Lambda also supports the deployment of multiple composed [Lambda layers](https://docs.aws.amazon.com/lambda/latest/dg/python-layers.html) when working with zip archives. These layers are conceptually similar to layers in a Docker image, allowing you to separate application code from dependencies.

In particular, we can create a lambda layer for application dependencies and attach it to the Lambda function, separate from the application code itself. This setup can improve cold-start performance for application updates, as the dependencies layer can be reused across deployments.

To create a Lambda layer, we'll follow similar steps, but create two separate zip archives: one for the application code and one for the application dependencies.

First, we'll create the dependency layer. Lambda layers are expected to follow a slightly different structure, so we'll use `--prefix` rather than `--target`:

```
$ uv export --frozen --no-dev --no-editable -o requirements.txt
$ uv pip install \
   --no-installer-metadata \
   --no-compile-bytecode \
   --python-platform x86_64-manylinux2014 \
   --python 3.13 \
   --prefix packages \
   -r requirements.txt

```

We'll then zip the dependencies in adherence with the expected layout for Lambda layers:

```
$ mkdir python
$ cp -r packages/lib python/
$ zip -r layer_content.zip python

```

Tip

To generate deterministic zip archives, consider passing the `-X` flag to `zip` to exclude extended attributes and file system metadata.

And publish the Lambda layer:

```
$ aws lambda publish-layer-version --layer-name dependencies-layer \
   --zip-file fileb://layer_content.zip \
   --compatible-runtimes python3.13 \
   --compatible-architectures "x86_64"

```

We can then create the Lambda function as in the previous example, omitting the dependencies:

```
$ # Zip the application code.
$ zip -r app.zip app

$ # Create the Lambda function.
$ aws lambda create-function \
   --function-name myFunction \
   --runtime python3.13 \
   --zip-file fileb://app.zip \
   --handler app.main.handler \
   --role arn:aws:iam::111122223333:role/service-role/my-lambda-role

```

Finally, we can attach the dependencies layer to the Lambda function, using the ARN returned by the `publish-layer-version` step:

```
$ aws lambda update-function-configuration --function-name myFunction \
    --cli-binary-format raw-in-base64-out \
    --layers "arn:aws:lambda:region:111122223333:layer:dependencies-layer:1"

```

When the application dependencies change, the layer can be updated independently of the application by republishing the layer and updating the Lambda function configuration:

```
$ # Update the dependencies in the layer.
$ aws lambda publish-layer-version --layer-name dependencies-layer \
   --zip-file fileb://layer_content.zip \
   --compatible-runtimes python3.13 \
   --compatible-architectures "x86_64"

$ # Update the Lambda function configuration.
$ aws lambda update-function-configuration --function-name myFunction \
    --cli-binary-format raw-in-base64-out \
    --layers "arn:aws:lambda:region:111122223333:layer:dependencies-layer:2"

```