๐Ÿ“ฆ TheAlgorithms / Python

๐Ÿ“„ q_fourier_transform.py ยท 97 lines
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97"""
Build the quantum fourier transform (qft) for a desire
number of quantum bits using Qiskit framework. This
experiment run in IBM Q simulator with 10000 shots.
This circuit can be use as a building block to design
the Shor's algorithm in quantum computing. As well as,
quantum phase estimation among others.
.
References:
https://en.wikipedia.org/wiki/Quantum_Fourier_transform
https://qiskit.org/textbook/ch-algorithms/quantum-fourier-transform.html
"""

import math

import numpy as np
import qiskit
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute


def quantum_fourier_transform(number_of_qubits: int = 3) -> qiskit.result.counts.Counts:
    """
    # >>> quantum_fourier_transform(2)
    # {'00': 2500, '01': 2500, '11': 2500, '10': 2500}
    # quantum circuit for number_of_qubits = 3:
                                               โ”Œโ”€โ”€โ”€โ”
    qr_0: โ”€โ”€โ”€โ”€โ”€โ”€โ– โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ– โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค H โ”œโ”€Xโ”€
                โ”‚                โ”Œโ”€โ”€โ”€โ” โ”‚P(ฯ€/2) โ””โ”€โ”€โ”€โ”˜ โ”‚
    qr_1: โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ– โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค H โ”œโ”€โ– โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€
          โ”Œโ”€โ”€โ”€โ” โ”‚P(ฯ€/4)  โ”‚P(ฯ€/2) โ””โ”€โ”€โ”€โ”˜               โ”‚
    qr_2: โ”ค H โ”œโ”€โ– โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ– โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€Xโ”€
          โ””โ”€โ”€โ”€โ”˜
    cr: 3/โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•
    Args:
        n : number of qubits
    Returns:
        qiskit.result.counts.Counts: distribute counts.

    >>> quantum_fourier_transform(2)
    {'00': 2500, '01': 2500, '10': 2500, '11': 2500}
    >>> quantum_fourier_transform(-1)
    Traceback (most recent call last):
        ...
    ValueError: number of qubits must be > 0.
    >>> quantum_fourier_transform('a')
    Traceback (most recent call last):
        ...
    TypeError: number of qubits must be a integer.
    >>> quantum_fourier_transform(100)
    Traceback (most recent call last):
        ...
    ValueError: number of qubits too large to simulate(>10).
    >>> quantum_fourier_transform(0.5)
    Traceback (most recent call last):
        ...
    ValueError: number of qubits must be exact integer.
    """
    if isinstance(number_of_qubits, str):
        raise TypeError("number of qubits must be a integer.")
    if number_of_qubits <= 0:
        raise ValueError("number of qubits must be > 0.")
    if math.floor(number_of_qubits) != number_of_qubits:
        raise ValueError("number of qubits must be exact integer.")
    if number_of_qubits > 10:
        raise ValueError("number of qubits too large to simulate(>10).")

    qr = QuantumRegister(number_of_qubits, "qr")
    cr = ClassicalRegister(number_of_qubits, "cr")

    quantum_circuit = QuantumCircuit(qr, cr)

    counter = number_of_qubits

    for i in range(counter):
        quantum_circuit.h(number_of_qubits - i - 1)
        counter -= 1
        for j in range(counter):
            quantum_circuit.cp(np.pi / 2 ** (counter - j), j, counter)

    for k in range(number_of_qubits // 2):
        quantum_circuit.swap(k, number_of_qubits - k - 1)

    # measure all the qubits
    quantum_circuit.measure(qr, cr)
    # simulate with 10000 shots
    backend = Aer.get_backend("qasm_simulator")
    job = execute(quantum_circuit, backend, shots=10000)

    return job.result().get_counts(quantum_circuit)


if __name__ == "__main__":
    print(
        f"Total count for quantum fourier transform state is: \
    {quantum_fourier_transform(3)}"
    )