๐Ÿ“ฆ TheAlgorithms / Python

๐Ÿ“„ radix2_fft.py ยท 179 lines
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179"""
Fast Polynomial Multiplication using radix-2 fast Fourier Transform.
"""

import mpmath  # for roots of unity
import numpy as np


class FFT:
    """
    Fast Polynomial Multiplication using radix-2 fast Fourier Transform.

    Reference:
    https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm#The_radix-2_DIT_case

    For polynomials of degree m and n the algorithms has complexity
    O(n*logn + m*logm)

    The main part of the algorithm is split in two parts:
        1) __DFT: We compute the discrete fourier transform (DFT) of A and B using a
        bottom-up dynamic approach -
        2) __multiply: Once we obtain the DFT of A*B, we can similarly
        invert it to obtain A*B

    The class FFT takes two polynomials A and B with complex coefficients as arguments;
    The two polynomials should be represented as a sequence of coefficients starting
    from the free term. Thus, for instance x + 2*x^3 could be represented as
    [0,1,0,2] or (0,1,0,2). The constructor adds some zeros at the end so that the
    polynomials have the same length which is a power of 2 at least the length of
    their product.

    Example:

    Create two polynomials as sequences
    >>> A = [0, 1, 0, 2]  # x+2x^3
    >>> B = (2, 3, 4, 0)  # 2+3x+4x^2

    Create an FFT object with them
    >>> x = FFT(A, B)

    Print product
    >>> x.product  # 2x + 3x^2 + 8x^3 + 6x^4 + 8x^5
    [(-0-0j), (2+0j), (3-0j), (8-0j), (6+0j), (8+0j)]

    __str__ test
    >>> print(x)
    A = 0*x^0 + 1*x^1 + 0*x^2 + 2*x^3
    B = 2*x^0 + 3*x^1 + 4*x^2
    A*B = (-0-0j)*x^0 + (2+0j)*x^1 + (3-0j)*x^2 + (8-0j)*x^3 + (6+0j)*x^4 + (8+0j)*x^5
    """

    def __init__(self, poly_a=None, poly_b=None):
        # Input as list
        self.polyA = list(poly_a or [0])[:]
        self.polyB = list(poly_b or [0])[:]

        # Remove leading zero coefficients
        while self.polyA[-1] == 0:
            self.polyA.pop()
        self.len_A = len(self.polyA)

        while self.polyB[-1] == 0:
            self.polyB.pop()
        self.len_B = len(self.polyB)

        # Add 0 to make lengths equal a power of 2
        self.c_max_length = int(
            2 ** np.ceil(np.log2(len(self.polyA) + len(self.polyB) - 1))
        )

        while len(self.polyA) < self.c_max_length:
            self.polyA.append(0)
        while len(self.polyB) < self.c_max_length:
            self.polyB.append(0)
        # A complex root used for the fourier transform
        self.root = complex(mpmath.root(x=1, n=self.c_max_length, k=1))

        # The product
        self.product = self.__multiply()

    # Discrete fourier transform of A and B
    def __dft(self, which):
        dft = [[x] for x in self.polyA] if which == "A" else [[x] for x in self.polyB]
        # Corner case
        if len(dft) <= 1:
            return dft[0]
        next_ncol = self.c_max_length // 2
        while next_ncol > 0:
            new_dft = [[] for i in range(next_ncol)]
            root = self.root**next_ncol

            # First half of next step
            current_root = 1
            for j in range(self.c_max_length // (next_ncol * 2)):
                for i in range(next_ncol):
                    new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j])
                current_root *= root
            # Second half of next step
            current_root = 1
            for j in range(self.c_max_length // (next_ncol * 2)):
                for i in range(next_ncol):
                    new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j])
                current_root *= root
            # Update
            dft = new_dft
            next_ncol = next_ncol // 2
        return dft[0]

    # multiply the DFTs of  A and B and find A*B
    def __multiply(self):
        dft_a = self.__dft("A")
        dft_b = self.__dft("B")
        inverce_c = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length)]]
        del dft_a
        del dft_b

        # Corner Case
        if len(inverce_c[0]) <= 1:
            return inverce_c[0]
        # Inverse DFT
        next_ncol = 2
        while next_ncol <= self.c_max_length:
            new_inverse_c = [[] for i in range(next_ncol)]
            root = self.root ** (next_ncol // 2)
            current_root = 1
            # First half of next step
            for j in range(self.c_max_length // next_ncol):
                for i in range(next_ncol // 2):
                    # Even positions
                    new_inverse_c[i].append(
                        (
                            inverce_c[i][j]
                            + inverce_c[i][j + self.c_max_length // next_ncol]
                        )
                        / 2
                    )
                    # Odd positions
                    new_inverse_c[i + next_ncol // 2].append(
                        (
                            inverce_c[i][j]
                            - inverce_c[i][j + self.c_max_length // next_ncol]
                        )
                        / (2 * current_root)
                    )
                current_root *= root
            # Update
            inverce_c = new_inverse_c
            next_ncol *= 2
        # Unpack
        inverce_c = [
            complex(round(x[0].real, 8), round(x[0].imag, 8)) for x in inverce_c
        ]

        # Remove leading 0's
        while inverce_c[-1] == 0:
            inverce_c.pop()
        return inverce_c

    # Overwrite __str__ for print(); Shows A, B and A*B
    def __str__(self):
        a = "A = " + " + ".join(
            f"{coef}*x^{i}" for i, coef in enumerate(self.polyA[: self.len_A])
        )
        b = "B = " + " + ".join(
            f"{coef}*x^{i}" for i, coef in enumerate(self.polyB[: self.len_B])
        )
        c = "A*B = " + " + ".join(
            f"{coef}*x^{i}" for i, coef in enumerate(self.product)
        )

        return f"{a}\n{b}\n{c}"


# Unit tests
if __name__ == "__main__":
    import doctest

    doctest.testmod()