๐Ÿ“ฆ TheAlgorithms / Python

๐Ÿ“„ sequential_minimum_optimization.py ยท 623 lines
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623"""
Sequential minimal optimization (SMO) for support vector machines (SVM)

Sequential minimal optimization (SMO) is an algorithm for solving the quadratic
programming (QP) problem that arises during the training of SVMs. It was invented by
John Platt in 1998.

Input:
    0: type: numpy.ndarray.
    1: first column of ndarray must be tags of samples, must be 1 or -1.
    2: rows of ndarray represent samples.

Usage:
    Command:
        python3 sequential_minimum_optimization.py
    Code:
        from sequential_minimum_optimization import SmoSVM, Kernel

        kernel = Kernel(kernel='poly', degree=3., coef0=1., gamma=0.5)
        init_alphas = np.zeros(train.shape[0])
        SVM = SmoSVM(train=train, alpha_list=init_alphas, kernel_func=kernel, cost=0.4,
                     b=0.0, tolerance=0.001)
        SVM.fit()
        predict = SVM.predict(test_samples)

Reference:
    https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/smo-book.pdf
    https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-98-14.pdf
"""

import os
import sys
import urllib.request

import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.datasets import make_blobs, make_circles
from sklearn.preprocessing import StandardScaler

CANCER_DATASET_URL = (
    "https://archive.ics.uci.edu/ml/machine-learning-databases/"
    "breast-cancer-wisconsin/wdbc.data"
)


class SmoSVM:
    def __init__(
        self,
        train,
        kernel_func,
        alpha_list=None,
        cost=0.4,
        b=0.0,
        tolerance=0.001,
        auto_norm=True,
    ):
        self._init = True
        self._auto_norm = auto_norm
        self._c = np.float64(cost)
        self._b = np.float64(b)
        self._tol = np.float64(tolerance) if tolerance > 0.0001 else np.float64(0.001)

        self.tags = train[:, 0]
        self.samples = self._norm(train[:, 1:]) if self._auto_norm else train[:, 1:]
        self.alphas = alpha_list if alpha_list is not None else np.zeros(train.shape[0])
        self.Kernel = kernel_func

        self._eps = 0.001
        self._all_samples = list(range(self.length))
        self._K_matrix = self._calculate_k_matrix()
        self._error = np.zeros(self.length)
        self._unbound = []

        self.choose_alpha = self._choose_alphas()

    # Calculate alphas using SMO algorithm
    def fit(self):
        k = self._k
        state = None
        while True:
            # 1: Find alpha1, alpha2
            try:
                i1, i2 = self.choose_alpha.send(state)
                state = None
            except StopIteration:
                print("Optimization done!\nEvery sample satisfy the KKT condition!")
                break

            # 2: calculate new alpha2 and new alpha1
            y1, y2 = self.tags[i1], self.tags[i2]
            a1, a2 = self.alphas[i1].copy(), self.alphas[i2].copy()
            e1, e2 = self._e(i1), self._e(i2)
            args = (i1, i2, a1, a2, e1, e2, y1, y2)
            a1_new, a2_new = self._get_new_alpha(*args)
            if not a1_new and not a2_new:
                state = False
                continue
            self.alphas[i1], self.alphas[i2] = a1_new, a2_new

            # 3: update threshold(b)
            b1_new = np.float64(
                -e1
                - y1 * k(i1, i1) * (a1_new - a1)
                - y2 * k(i2, i1) * (a2_new - a2)
                + self._b
            )
            b2_new = np.float64(
                -e2
                - y2 * k(i2, i2) * (a2_new - a2)
                - y1 * k(i1, i2) * (a1_new - a1)
                + self._b
            )
            if 0.0 < a1_new < self._c:
                b = b1_new
            if 0.0 < a2_new < self._c:
                b = b2_new
            if not (np.float64(0) < a2_new < self._c) and not (
                np.float64(0) < a1_new < self._c
            ):
                b = (b1_new + b2_new) / 2.0
            b_old = self._b
            self._b = b

            # 4: update error, here we only calculate the error for non-bound samples
            self._unbound = [i for i in self._all_samples if self._is_unbound(i)]
            for s in self.unbound:
                if s in (i1, i2):
                    continue
                self._error[s] += (
                    y1 * (a1_new - a1) * k(i1, s)
                    + y2 * (a2_new - a2) * k(i2, s)
                    + (self._b - b_old)
                )

            # if i1 or i2 is non-bound, update their error value to zero
            if self._is_unbound(i1):
                self._error[i1] = 0
            if self._is_unbound(i2):
                self._error[i2] = 0

    # Predict test samples
    def predict(self, test_samples, classify=True):
        if test_samples.shape[1] > self.samples.shape[1]:
            raise ValueError(
                "Test samples' feature length does not equal to that of train samples"
            )

        if self._auto_norm:
            test_samples = self._norm(test_samples)

        results = []
        for test_sample in test_samples:
            result = self._predict(test_sample)
            if classify:
                results.append(1 if result > 0 else -1)
            else:
                results.append(result)
        return np.array(results)

    # Check if alpha violates the KKT condition
    def _check_obey_kkt(self, index):
        alphas = self.alphas
        tol = self._tol
        r = self._e(index) * self.tags[index]
        c = self._c

        return (r < -tol and alphas[index] < c) or (r > tol and alphas[index] > 0.0)

    # Get value calculated from kernel function
    def _k(self, i1, i2):
        # for test samples, use kernel function
        if isinstance(i2, np.ndarray):
            return self.Kernel(self.samples[i1], i2)
        # for training samples, kernel values have been saved in matrix
        else:
            return self._K_matrix[i1, i2]

    # Get error for sample
    def _e(self, index):
        """
        Two cases:
            1: Sample[index] is non-bound, fetch error from list: _error
            2: sample[index] is bound, use predicted value minus true value: g(xi) - yi
        """
        # get from error data
        if self._is_unbound(index):
            return self._error[index]
        # get by g(xi) - yi
        else:
            gx = np.dot(self.alphas * self.tags, self._K_matrix[:, index]) + self._b
            yi = self.tags[index]
            return gx - yi

    # Calculate kernel matrix of all possible i1, i2, saving time
    def _calculate_k_matrix(self):
        k_matrix = np.zeros([self.length, self.length])
        for i in self._all_samples:
            for j in self._all_samples:
                k_matrix[i, j] = np.float64(
                    self.Kernel(self.samples[i, :], self.samples[j, :])
                )
        return k_matrix

    # Predict tag for test sample
    def _predict(self, sample):
        k = self._k
        predicted_value = (
            np.sum(
                [
                    self.alphas[i1] * self.tags[i1] * k(i1, sample)
                    for i1 in self._all_samples
                ]
            )
            + self._b
        )
        return predicted_value

    # Choose alpha1 and alpha2
    def _choose_alphas(self):
        loci = yield from self._choose_a1()
        if not loci:
            return None
        return loci

    def _choose_a1(self):
        """
        Choose first alpha
        Steps:
            1: First loop over all samples
            2: Second loop over all non-bound samples until no non-bound samples violate
               the KKT condition.
            3: Repeat these two processes until no samples violate the KKT condition
               after the first loop.
        """
        while True:
            all_not_obey = True
            # all sample
            print("Scanning all samples!")
            for i1 in [i for i in self._all_samples if self._check_obey_kkt(i)]:
                all_not_obey = False
                yield from self._choose_a2(i1)

            # non-bound sample
            print("Scanning non-bound samples!")
            while True:
                not_obey = True
                for i1 in [
                    i
                    for i in self._all_samples
                    if self._check_obey_kkt(i) and self._is_unbound(i)
                ]:
                    not_obey = False
                    yield from self._choose_a2(i1)
                if not_obey:
                    print("All non-bound samples satisfy the KKT condition!")
                    break
            if all_not_obey:
                print("All samples satisfy the KKT condition!")
                break
        return False

    def _choose_a2(self, i1):
        """
        Choose the second alpha using a heuristic algorithm
        Steps:
            1: Choose alpha2 that maximizes the step size (|E1 - E2|).
            2: Start in a random point, loop over all non-bound samples till alpha1 and
               alpha2 are optimized.
            3: Start in a random point, loop over all samples till alpha1 and alpha2 are
               optimized.
        """
        self._unbound = [i for i in self._all_samples if self._is_unbound(i)]

        if len(self.unbound) > 0:
            tmp_error = self._error.copy().tolist()
            tmp_error_dict = {
                index: value
                for index, value in enumerate(tmp_error)
                if self._is_unbound(index)
            }
            if self._e(i1) >= 0:
                i2 = min(tmp_error_dict, key=lambda index: tmp_error_dict[index])
            else:
                i2 = max(tmp_error_dict, key=lambda index: tmp_error_dict[index])
            cmd = yield i1, i2
            if cmd is None:
                return

        rng = np.random.default_rng()
        for i2 in np.roll(self.unbound, rng.choice(self.length)):
            cmd = yield i1, i2
            if cmd is None:
                return

        for i2 in np.roll(self._all_samples, rng.choice(self.length)):
            cmd = yield i1, i2
            if cmd is None:
                return

    # Get the new alpha2 and new alpha1
    def _get_new_alpha(self, i1, i2, a1, a2, e1, e2, y1, y2):
        k = self._k
        if i1 == i2:
            return None, None

        # calculate L and H which bound the new alpha2
        s = y1 * y2
        if s == -1:
            l, h = max(0.0, a2 - a1), min(self._c, self._c + a2 - a1)  # noqa: E741
        else:
            l, h = max(0.0, a2 + a1 - self._c), min(self._c, a2 + a1)  # noqa: E741
        if l == h:
            return None, None

        # calculate eta
        k11 = k(i1, i1)
        k22 = k(i2, i2)
        k12 = k(i1, i2)

        # select the new alpha2 which could achieve the minimal objectives
        if (eta := k11 + k22 - 2.0 * k12) > 0.0:
            a2_new_unc = a2 + (y2 * (e1 - e2)) / eta
            # a2_new has a boundary
            if a2_new_unc >= h:
                a2_new = h
            elif a2_new_unc <= l:
                a2_new = l
            else:
                a2_new = a2_new_unc
        else:
            b = self._b
            l1 = a1 + s * (a2 - l)
            h1 = a1 + s * (a2 - h)

            # Method 1
            f1 = y1 * (e1 + b) - a1 * k(i1, i1) - s * a2 * k(i1, i2)
            f2 = y2 * (e2 + b) - a2 * k(i2, i2) - s * a1 * k(i1, i2)
            ol = (
                l1 * f1
                + l * f2
                + 1 / 2 * l1**2 * k(i1, i1)
                + 1 / 2 * l**2 * k(i2, i2)
                + s * l * l1 * k(i1, i2)
            )
            oh = (
                h1 * f1
                + h * f2
                + 1 / 2 * h1**2 * k(i1, i1)
                + 1 / 2 * h**2 * k(i2, i2)
                + s * h * h1 * k(i1, i2)
            )
            """
            Method 2: Use objective function to check which alpha2_new could achieve the
            minimal objectives
            """
            if ol < (oh - self._eps):
                a2_new = l
            elif ol > oh + self._eps:
                a2_new = h
            else:
                a2_new = a2

        # a1_new has a boundary too
        a1_new = a1 + s * (a2 - a2_new)
        if a1_new < 0:
            a2_new += s * a1_new
            a1_new = 0
        if a1_new > self._c:
            a2_new += s * (a1_new - self._c)
            a1_new = self._c

        return a1_new, a2_new

    # Normalize data using min-max method
    def _norm(self, data):
        if self._init:
            self._min = np.min(data, axis=0)
            self._max = np.max(data, axis=0)
            self._init = False
            return (data - self._min) / (self._max - self._min)
        else:
            return (data - self._min) / (self._max - self._min)

    def _is_unbound(self, index):
        return bool(0.0 < self.alphas[index] < self._c)

    def _is_support(self, index):
        return bool(self.alphas[index] > 0)

    @property
    def unbound(self):
        return self._unbound

    @property
    def support(self):
        return [i for i in range(self.length) if self._is_support(i)]

    @property
    def length(self):
        return self.samples.shape[0]


class Kernel:
    def __init__(self, kernel, degree=1.0, coef0=0.0, gamma=1.0):
        self.degree = np.float64(degree)
        self.coef0 = np.float64(coef0)
        self.gamma = np.float64(gamma)
        self._kernel_name = kernel
        self._kernel = self._get_kernel(kernel_name=kernel)
        self._check()

    def _polynomial(self, v1, v2):
        return (self.gamma * np.inner(v1, v2) + self.coef0) ** self.degree

    def _linear(self, v1, v2):
        return np.inner(v1, v2) + self.coef0

    def _rbf(self, v1, v2):
        return np.exp(-1 * (self.gamma * np.linalg.norm(v1 - v2) ** 2))

    def _check(self):
        if self._kernel == self._rbf and self.gamma < 0:
            raise ValueError("gamma value must be non-negative")

    def _get_kernel(self, kernel_name):
        maps = {"linear": self._linear, "poly": self._polynomial, "rbf": self._rbf}
        return maps[kernel_name]

    def __call__(self, v1, v2):
        return self._kernel(v1, v2)

    def __repr__(self):
        return self._kernel_name


def count_time(func):
    def call_func(*args, **kwargs):
        import time

        start_time = time.time()
        func(*args, **kwargs)
        end_time = time.time()
        print(f"SMO algorithm cost {end_time - start_time} seconds")

    return call_func


@count_time
def test_cancer_data():
    print("Hello!\nStart test SVM using the SMO algorithm!")
    # 0: download dataset and load into pandas' dataframe
    if not os.path.exists(r"cancer_data.csv"):
        request = urllib.request.Request(  # noqa: S310
            CANCER_DATASET_URL,
            headers={"User-Agent": "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)"},
        )
        response = urllib.request.urlopen(request)  # noqa: S310
        content = response.read().decode("utf-8")
        with open(r"cancer_data.csv", "w") as f:
            f.write(content)

    data = pd.read_csv(
        "cancer_data.csv",
        header=None,
        dtype={0: str},  # Assuming the first column contains string data
    )

    # 1: pre-processing data
    del data[data.columns.tolist()[0]]
    data = data.dropna(axis=0)
    data = data.replace({"M": np.float64(1), "B": np.float64(-1)})
    samples = np.array(data)[:, :]

    # 2: dividing data into train_data data and test_data data
    train_data, test_data = samples[:328, :], samples[328:, :]
    test_tags, test_samples = test_data[:, 0], test_data[:, 1:]

    # 3: choose kernel function, and set initial alphas to zero (optional)
    my_kernel = Kernel(kernel="rbf", degree=5, coef0=1, gamma=0.5)
    al = np.zeros(train_data.shape[0])

    # 4: calculating best alphas using SMO algorithm and predict test_data samples
    mysvm = SmoSVM(
        train=train_data,
        kernel_func=my_kernel,
        alpha_list=al,
        cost=0.4,
        b=0.0,
        tolerance=0.001,
    )
    mysvm.fit()
    predict = mysvm.predict(test_samples)

    # 5: check accuracy
    score = 0
    test_num = test_tags.shape[0]
    for i in range(test_tags.shape[0]):
        if test_tags[i] == predict[i]:
            score += 1
    print(f"\nAll: {test_num}\nCorrect: {score}\nIncorrect: {test_num - score}")
    print(f"Rough Accuracy: {score / test_tags.shape[0]}")


def test_demonstration():
    # change stdout
    print("\nStarting plot, please wait!")
    sys.stdout = open(os.devnull, "w")

    ax1 = plt.subplot2grid((2, 2), (0, 0))
    ax2 = plt.subplot2grid((2, 2), (0, 1))
    ax3 = plt.subplot2grid((2, 2), (1, 0))
    ax4 = plt.subplot2grid((2, 2), (1, 1))
    ax1.set_title("Linear SVM, cost = 0.1")
    test_linear_kernel(ax1, cost=0.1)
    ax2.set_title("Linear SVM, cost = 500")
    test_linear_kernel(ax2, cost=500)
    ax3.set_title("RBF kernel SVM, cost = 0.1")
    test_rbf_kernel(ax3, cost=0.1)
    ax4.set_title("RBF kernel SVM, cost = 500")
    test_rbf_kernel(ax4, cost=500)

    sys.stdout = sys.__stdout__
    print("Plot done!")


def test_linear_kernel(ax, cost):
    train_x, train_y = make_blobs(
        n_samples=500, centers=2, n_features=2, random_state=1
    )
    train_y[train_y == 0] = -1
    scaler = StandardScaler()
    train_x_scaled = scaler.fit_transform(train_x, train_y)
    train_data = np.hstack((train_y.reshape(500, 1), train_x_scaled))
    my_kernel = Kernel(kernel="linear", degree=5, coef0=1, gamma=0.5)
    mysvm = SmoSVM(
        train=train_data,
        kernel_func=my_kernel,
        cost=cost,
        tolerance=0.001,
        auto_norm=False,
    )
    mysvm.fit()
    plot_partition_boundary(mysvm, train_data, ax=ax)


def test_rbf_kernel(ax, cost):
    train_x, train_y = make_circles(
        n_samples=500, noise=0.1, factor=0.1, random_state=1
    )
    train_y[train_y == 0] = -1
    scaler = StandardScaler()
    train_x_scaled = scaler.fit_transform(train_x, train_y)
    train_data = np.hstack((train_y.reshape(500, 1), train_x_scaled))
    my_kernel = Kernel(kernel="rbf", degree=5, coef0=1, gamma=0.5)
    mysvm = SmoSVM(
        train=train_data,
        kernel_func=my_kernel,
        cost=cost,
        tolerance=0.001,
        auto_norm=False,
    )
    mysvm.fit()
    plot_partition_boundary(mysvm, train_data, ax=ax)


def plot_partition_boundary(
    model, train_data, ax, resolution=100, colors=("b", "k", "r")
):
    """
    We cannot get the optimal w of our kernel SVM model, which is different from a
    linear SVM.  For this reason, we generate randomly distributed points with high
    density, and predicted values of these points are calculated using our trained
    model. Then we could use this predicted values to draw contour map, and this contour
    map represents the SVM's partition boundary.
    """
    train_data_x = train_data[:, 1]
    train_data_y = train_data[:, 2]
    train_data_tags = train_data[:, 0]
    xrange = np.linspace(train_data_x.min(), train_data_x.max(), resolution)
    yrange = np.linspace(train_data_y.min(), train_data_y.max(), resolution)
    test_samples = np.array([(x, y) for x in xrange for y in yrange]).reshape(
        resolution * resolution, 2
    )

    test_tags = model.predict(test_samples, classify=False)
    grid = test_tags.reshape((len(xrange), len(yrange)))

    # Plot contour map which represents the partition boundary
    ax.contour(
        xrange,
        yrange,
        np.asmatrix(grid).T,
        levels=(-1, 0, 1),
        linestyles=("--", "-", "--"),
        linewidths=(1, 1, 1),
        colors=colors,
    )
    # Plot all train samples
    ax.scatter(
        train_data_x,
        train_data_y,
        c=train_data_tags,
        cmap=plt.cm.Dark2,
        lw=0,
        alpha=0.5,
    )

    # Plot support vectors
    support = model.support
    ax.scatter(
        train_data_x[support],
        train_data_y[support],
        c=train_data_tags[support],
        cmap=plt.cm.Dark2,
    )


if __name__ == "__main__":
    test_cancer_data()
    test_demonstration()
    plt.show()