๐Ÿ“ฆ TheAlgorithms / Python

๐Ÿ“„ k_means_clust.py ยท 364 lines
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364"""README, Author - Anurag Kumar(mailto:anuragkumarak95@gmail.com)
Requirements:
  - sklearn
  - numpy
  - matplotlib
Python:
  - 3.5
Inputs:
  - X , a 2D numpy array of features.
  - k , number of clusters to create.
  - initial_centroids , initial centroid values generated by utility function(mentioned
    in usage).
  - maxiter , maximum number of iterations to process.
  - heterogeneity , empty list that will be filled with heterogeneity values if passed
    to kmeans func.
Usage:
  1. define 'k' value, 'X' features array and 'heterogeneity' empty list
  2. create initial_centroids,
        initial_centroids = get_initial_centroids(
            X,
            k,
            seed=0 # seed value for initial centroid generation,
                   # None for randomness(default=None)
            )
  3. find centroids and clusters using kmeans function.
        centroids, cluster_assignment = kmeans(
            X,
            k,
            initial_centroids,
            maxiter=400,
            record_heterogeneity=heterogeneity,
            verbose=True # whether to print logs in console or not.(default=False)
            )
  4. Plot the loss function and heterogeneity values for every iteration saved in
     heterogeneity list.
        plot_heterogeneity(
            heterogeneity,
            k
        )
  5. Plot the labeled 3D data points with centroids.
        plot_kmeans(
            X,
            centroids,
            cluster_assignment
        )
  6. Transfers Dataframe into excel format it must have feature called
      'Clust' with k means clustering numbers in it.
"""

import warnings

import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.metrics import pairwise_distances

warnings.filterwarnings("ignore")

TAG = "K-MEANS-CLUST/ "


def get_initial_centroids(data, k, seed=None):
    """Randomly choose k data points as initial centroids"""
    # useful for obtaining consistent results
    rng = np.random.default_rng(seed)
    n = data.shape[0]  # number of data points

    # Pick K indices from range [0, N).
    rand_indices = rng.integers(0, n, k)

    # Keep centroids as dense format, as many entries will be nonzero due to averaging.
    # As long as at least one document in a cluster contains a word,
    # it will carry a nonzero weight in the TF-IDF vector of the centroid.
    centroids = data[rand_indices, :]

    return centroids


def centroid_pairwise_dist(x, centroids):
    return pairwise_distances(x, centroids, metric="euclidean")


def assign_clusters(data, centroids):
    # Compute distances between each data point and the set of centroids:
    # Fill in the blank (RHS only)
    distances_from_centroids = centroid_pairwise_dist(data, centroids)

    # Compute cluster assignments for each data point:
    # Fill in the blank (RHS only)
    cluster_assignment = np.argmin(distances_from_centroids, axis=1)

    return cluster_assignment


def revise_centroids(data, k, cluster_assignment):
    new_centroids = []
    for i in range(k):
        # Select all data points that belong to cluster i. Fill in the blank (RHS only)
        member_data_points = data[cluster_assignment == i]
        # Compute the mean of the data points. Fill in the blank (RHS only)
        centroid = member_data_points.mean(axis=0)
        new_centroids.append(centroid)
    new_centroids = np.array(new_centroids)

    return new_centroids


def compute_heterogeneity(data, k, centroids, cluster_assignment):
    heterogeneity = 0.0
    for i in range(k):
        # Select all data points that belong to cluster i. Fill in the blank (RHS only)
        member_data_points = data[cluster_assignment == i, :]

        if member_data_points.shape[0] > 0:  # check if i-th cluster is non-empty
            # Compute distances from centroid to data points (RHS only)
            distances = pairwise_distances(
                member_data_points, [centroids[i]], metric="euclidean"
            )
            squared_distances = distances**2
            heterogeneity += np.sum(squared_distances)

    return heterogeneity


def plot_heterogeneity(heterogeneity, k):
    plt.figure(figsize=(7, 4))
    plt.plot(heterogeneity, linewidth=4)
    plt.xlabel("# Iterations")
    plt.ylabel("Heterogeneity")
    plt.title(f"Heterogeneity of clustering over time, K={k:d}")
    plt.rcParams.update({"font.size": 16})
    plt.show()


def plot_kmeans(data, centroids, cluster_assignment):
    ax = plt.axes(projection="3d")
    ax.scatter(data[:, 0], data[:, 1], data[:, 2], c=cluster_assignment, cmap="viridis")
    ax.scatter(
        centroids[:, 0], centroids[:, 1], centroids[:, 2], c="red", s=100, marker="x"
    )
    ax.set_xlabel("X")
    ax.set_ylabel("Y")
    ax.set_zlabel("Z")
    ax.set_title("3D K-Means Clustering Visualization")
    plt.show()


def kmeans(
    data, k, initial_centroids, maxiter=500, record_heterogeneity=None, verbose=False
):
    """Runs k-means on given data and initial set of centroids.
    maxiter: maximum number of iterations to run.(default=500)
    record_heterogeneity: (optional) a list, to store the history of heterogeneity
                          as function of iterations
                          if None, do not store the history.
    verbose: if True, print how many data points changed their cluster labels in
                          each iteration"""
    centroids = initial_centroids[:]
    prev_cluster_assignment = None

    for itr in range(maxiter):
        if verbose:
            print(itr, end="")

        # 1. Make cluster assignments using nearest centroids
        cluster_assignment = assign_clusters(data, centroids)

        # 2. Compute a new centroid for each of the k clusters, averaging all data
        #    points assigned to that cluster.
        centroids = revise_centroids(data, k, cluster_assignment)

        # Check for convergence: if none of the assignments changed, stop
        if (
            prev_cluster_assignment is not None
            and (prev_cluster_assignment == cluster_assignment).all()
        ):
            break

        # Print number of new assignments
        if prev_cluster_assignment is not None:
            num_changed = np.sum(prev_cluster_assignment != cluster_assignment)
            if verbose:
                print(
                    f"    {num_changed:5d} elements changed their cluster assignment."
                )

        # Record heterogeneity convergence metric
        if record_heterogeneity is not None:
            # YOUR CODE HERE
            score = compute_heterogeneity(data, k, centroids, cluster_assignment)
            record_heterogeneity.append(score)

        prev_cluster_assignment = cluster_assignment[:]

    return centroids, cluster_assignment


# Mock test below
if False:  # change to true to run this test case.
    from sklearn import datasets as ds

    dataset = ds.load_iris()
    k = 3
    heterogeneity = []
    initial_centroids = get_initial_centroids(dataset["data"], k, seed=0)
    centroids, cluster_assignment = kmeans(
        dataset["data"],
        k,
        initial_centroids,
        maxiter=400,
        record_heterogeneity=heterogeneity,
        verbose=True,
    )
    plot_heterogeneity(heterogeneity, k)
    plot_kmeans(dataset["data"], centroids, cluster_assignment)


def report_generator(
    predicted: pd.DataFrame, clustering_variables: np.ndarray, fill_missing_report=None
) -> pd.DataFrame:
    """
    Generate a clustering report given these two arguments:
        predicted - dataframe with predicted cluster column
        fill_missing_report - dictionary of rules on how we are going to fill in missing
        values for final generated report (not included in modelling);
    >>> predicted = pd.DataFrame()
    >>> predicted['numbers'] = [1, 2, 3]
    >>> predicted['col1'] = [0.5, 2.5, 4.5]
    >>> predicted['col2'] = [100, 200, 300]
    >>> predicted['col3'] = [10, 20, 30]
    >>> predicted['Cluster'] = [1, 1, 2]
    >>> report_generator(predicted, ['col1', 'col2'], 0)
               Features               Type   Mark           1           2
    0    # of Customers        ClusterSize  False    2.000000    1.000000
    1    % of Customers  ClusterProportion  False    0.666667    0.333333
    2              col1    mean_with_zeros   True    1.500000    4.500000
    3              col2    mean_with_zeros   True  150.000000  300.000000
    4           numbers    mean_with_zeros  False    1.500000    3.000000
    ..              ...                ...    ...         ...         ...
    99            dummy                 5%  False    1.000000    1.000000
    100           dummy                95%  False    1.000000    1.000000
    101           dummy              stdev  False    0.000000         NaN
    102           dummy               mode  False    1.000000    1.000000
    103           dummy             median  False    1.000000    1.000000
    <BLANKLINE>
    [104 rows x 5 columns]
    """
    # Fill missing values with given rules
    if fill_missing_report:
        predicted = predicted.fillna(value=fill_missing_report)
    predicted["dummy"] = 1
    numeric_cols = predicted.select_dtypes(np.number).columns
    report = (
        predicted.groupby(["Cluster"])[  # construct report dataframe
            numeric_cols
        ]  # group by cluster number
        .agg(
            [
                ("sum", "sum"),
                ("mean_with_zeros", lambda x: np.mean(np.nan_to_num(x))),
                ("mean_without_zeros", lambda x: x.replace(0, np.nan).mean()),
                (
                    "mean_25-75",
                    lambda x: np.mean(
                        np.nan_to_num(
                            sorted(x)[
                                round(len(x) * 25 / 100) : round(len(x) * 75 / 100)
                            ]
                        )
                    ),
                ),
                ("mean_with_na", "mean"),
                ("min", lambda x: x.min()),
                ("5%", lambda x: x.quantile(0.05)),
                ("25%", lambda x: x.quantile(0.25)),
                ("50%", lambda x: x.quantile(0.50)),
                ("75%", lambda x: x.quantile(0.75)),
                ("95%", lambda x: x.quantile(0.95)),
                ("max", lambda x: x.max()),
                ("count", lambda x: x.count()),
                ("stdev", lambda x: x.std()),
                ("mode", lambda x: x.mode()[0]),
                ("median", lambda x: x.median()),
                ("# > 0", lambda x: (x > 0).sum()),
            ]
        )
        .T.reset_index()
        .rename(index=str, columns={"level_0": "Features", "level_1": "Type"})
    )  # rename columns
    # calculate the size of cluster(count of clientID's)
    # avoid SettingWithCopyWarning
    clustersize = report[
        (report["Features"] == "dummy") & (report["Type"] == "count")
    ].copy()
    # rename created predicted cluster to match report column names
    clustersize.Type = "ClusterSize"
    clustersize.Features = "# of Customers"
    # calculating the proportion of cluster
    clusterproportion = pd.DataFrame(
        clustersize.iloc[:, 2:].to_numpy() / clustersize.iloc[:, 2:].to_numpy().sum()
    )
    # rename created predicted cluster to match report column names
    clusterproportion["Type"] = "% of Customers"
    clusterproportion["Features"] = "ClusterProportion"
    cols = clusterproportion.columns.tolist()
    cols = cols[-2:] + cols[:-2]
    clusterproportion = clusterproportion[cols]  # rearrange columns to match report
    clusterproportion.columns = report.columns
    # generating dataframe with count of nan values
    a = pd.DataFrame(
        abs(
            report[report["Type"] == "count"].iloc[:, 2:].to_numpy()
            - clustersize.iloc[:, 2:].to_numpy()
        )
    )
    a["Features"] = 0
    a["Type"] = "# of nan"
    # filling values in order to match report
    a.Features = report[report["Type"] == "count"].Features.tolist()
    cols = a.columns.tolist()
    cols = cols[-2:] + cols[:-2]
    a = a[cols]  # rearrange columns to match report
    a.columns = report.columns  # rename columns to match report
    # drop count values except for cluster size
    report = report.drop(report[report.Type == "count"].index)
    # concat report with cluster size and nan values
    report = pd.concat([report, a, clustersize, clusterproportion], axis=0)
    report["Mark"] = report["Features"].isin(clustering_variables)
    cols = report.columns.tolist()
    cols = cols[0:2] + cols[-1:] + cols[2:-1]
    report = report[cols]
    sorter1 = {
        "ClusterSize": 9,
        "ClusterProportion": 8,
        "mean_with_zeros": 7,
        "mean_with_na": 6,
        "max": 5,
        "50%": 4,
        "min": 3,
        "25%": 2,
        "75%": 1,
        "# of nan": 0,
        "# > 0": -1,
        "sum_with_na": -2,
    }
    report = (
        report.assign(
            Sorter1=lambda x: x.Type.map(sorter1),
            Sorter2=lambda x: list(reversed(range(len(x)))),
        )
        .sort_values(["Sorter1", "Mark", "Sorter2"], ascending=False)
        .drop(["Sorter1", "Sorter2"], axis=1)
    )
    report.columns.name = ""
    report = report.reset_index()
    report = report.drop(columns=["index"])
    return report


if __name__ == "__main__":
    import doctest

    doctest.testmod()