1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260/**
* @file src/task_pool.h
* @brief Declarations for the task pool system.
*/
#pragma once
// standard includes
#include <chrono>
#include <deque>
#include <functional>
#include <future>
#include <mutex>
#include <optional>
#include <type_traits>
#include <utility>
#include <vector>
// local includes
#include "move_by_copy.h"
#include "utility.h"
namespace task_pool_util {
class _ImplBase {
public:
// _unique_base_type _this_ptr;
inline virtual ~_ImplBase() = default;
virtual void run() = 0;
};
template<class Function>
class _Impl: public _ImplBase {
Function _func;
public:
_Impl(Function &&f):
_func(std::forward<Function>(f)) {
}
void run() override {
_func();
}
};
class TaskPool {
public:
typedef std::unique_ptr<_ImplBase> __task;
typedef _ImplBase *task_id_t;
typedef std::chrono::steady_clock::time_point __time_point;
template<class R>
class timer_task_t {
public:
task_id_t task_id;
std::future<R> future;
timer_task_t(task_id_t task_id, std::future<R> &future):
task_id {task_id},
future {std::move(future)} {
}
};
protected:
std::deque<__task> _tasks;
std::vector<std::pair<__time_point, __task>> _timer_tasks;
std::mutex _task_mutex;
public:
TaskPool() = default;
TaskPool(TaskPool &&other) noexcept:
_tasks {std::move(other._tasks)},
_timer_tasks {std::move(other._timer_tasks)} {
}
TaskPool &operator=(TaskPool &&other) noexcept {
std::swap(_tasks, other._tasks);
std::swap(_timer_tasks, other._timer_tasks);
return *this;
}
template<class Function, class... Args>
auto push(Function &&newTask, Args &&...args) {
static_assert(std::is_invocable_v<Function, Args &&...>, "arguments don't match the function");
using __return = std::invoke_result_t<Function, Args &&...>;
using task_t = std::packaged_task<__return()>;
auto bind = [task = std::forward<Function>(newTask), tuple_args = std::make_tuple(std::forward<Args>(args)...)]() mutable {
return std::apply(task, std::move(tuple_args));
};
task_t task(std::move(bind));
auto future = task.get_future();
std::lock_guard<std::mutex> lg(_task_mutex);
_tasks.emplace_back(toRunnable(std::move(task)));
return future;
}
void pushDelayed(std::pair<__time_point, __task> &&task) {
std::lock_guard lg(_task_mutex);
auto it = _timer_tasks.cbegin();
for (; it < _timer_tasks.cend(); ++it) {
if (std::get<0>(*it) < task.first) {
break;
}
}
_timer_tasks.emplace(it, task.first, std::move(task.second));
}
/**
* @return An id to potentially delay the task.
*/
template<class Function, class X, class Y, class... Args>
auto pushDelayed(Function &&newTask, std::chrono::duration<X, Y> duration, Args &&...args) {
static_assert(std::is_invocable_v<Function, Args &&...>, "arguments don't match the function");
using __return = std::invoke_result_t<Function, Args &&...>;
using task_t = std::packaged_task<__return()>;
__time_point time_point;
if constexpr (std::is_floating_point_v<X>) {
time_point = std::chrono::steady_clock::now() + std::chrono::duration_cast<std::chrono::nanoseconds>(duration);
} else {
time_point = std::chrono::steady_clock::now() + duration;
}
auto bind = [task = std::forward<Function>(newTask), tuple_args = std::make_tuple(std::forward<Args>(args)...)]() mutable {
return std::apply(task, std::move(tuple_args));
};
task_t task(std::move(bind));
auto future = task.get_future();
auto runnable = toRunnable(std::move(task));
task_id_t task_id = &*runnable;
pushDelayed(std::pair {time_point, std::move(runnable)});
return timer_task_t<__return> {task_id, future};
}
/**
* @param task_id The id of the task to delay.
* @param duration The delay before executing the task.
*/
template<class X, class Y>
void delay(task_id_t task_id, std::chrono::duration<X, Y> duration) {
std::lock_guard<std::mutex> lg(_task_mutex);
auto it = _timer_tasks.begin();
for (; it < _timer_tasks.cend(); ++it) {
const __task &task = std::get<1>(*it);
if (&*task == task_id) {
std::get<0>(*it) = std::chrono::steady_clock::now() + duration;
break;
}
}
if (it == _timer_tasks.cend()) {
return;
}
// smaller time goes to the back
auto prev = it - 1;
while (it > _timer_tasks.cbegin()) {
if (std::get<0>(*it) > std::get<0>(*prev)) {
std::swap(*it, *prev);
}
--prev;
--it;
}
}
bool cancel(task_id_t task_id) {
std::lock_guard lg(_task_mutex);
auto it = _timer_tasks.begin();
for (; it < _timer_tasks.cend(); ++it) {
const __task &task = std::get<1>(*it);
if (&*task == task_id) {
_timer_tasks.erase(it);
return true;
}
}
return false;
}
std::optional<std::pair<__time_point, __task>> pop(task_id_t task_id) {
std::lock_guard lg(_task_mutex);
auto pos = std::find_if(std::begin(_timer_tasks), std::end(_timer_tasks), [&task_id](const auto &t) {
return t.second.get() == task_id;
});
if (pos == std::end(_timer_tasks)) {
return std::nullopt;
}
return std::move(*pos);
}
std::optional<__task> pop() {
std::lock_guard lg(_task_mutex);
if (!_tasks.empty()) {
__task task = std::move(_tasks.front());
_tasks.pop_front();
return task;
}
if (!_timer_tasks.empty() && std::get<0>(_timer_tasks.back()) <= std::chrono::steady_clock::now()) {
__task task = std::move(std::get<1>(_timer_tasks.back()));
_timer_tasks.pop_back();
return task;
}
return std::nullopt;
}
bool ready() {
std::lock_guard<std::mutex> lg(_task_mutex);
return !_tasks.empty() || (!_timer_tasks.empty() && std::get<0>(_timer_tasks.back()) <= std::chrono::steady_clock::now());
}
std::optional<__time_point> next() {
std::lock_guard<std::mutex> lg(_task_mutex);
if (_timer_tasks.empty()) {
return std::nullopt;
}
return std::get<0>(_timer_tasks.back());
}
private:
template<class Function>
std::unique_ptr<_ImplBase> toRunnable(Function &&f) {
return std::make_unique<_Impl<Function>>(std::forward<Function &&>(f));
}
};
} // namespace task_pool_util